Как и где происходит процесс фотосинтеза у растений? Строение растительной клетки

Содержание статьи

ЦИКЛ УГЛЕРОДА, круговорот углерода, – циклическое перемещение углерода между миром живых существ и неорганическим миром атмосферы, морей, пресных вод, почвы и скал. Это один из важнейших биогеохимических циклов, включающий множество сложных реакций, в ходе которых углерод переходит из воздуха и водной среды в ткани растений и животных, а затем возвращается в атмосферу, воду и почву, становясь снова доступным для использования организмами. Поскольку углерод необходим для поддержания любой формы жизни, всякое вмешательство в круговорот этого элемента влияет на количество и разнообразие живых организмов, способных существовать на Земле.

Источники и резервы углерода.

Основной источник углерода для живых организмов – это атмосфера Земли, где данный элемент присутствует в виде диоксида углерода (углекислого газа, СО 2). В течение многих миллионов лет концентрация СО 2 в атмосфере, по-видимому, существенно не менялась, составляя ок. 0,03% веса сухого воздуха на уровне моря. Хотя доля СО 2 невелика, его абсолютное количество поистине огромно – ок. 750 млрд. т. В атмосфере СО 2 переносится ветрами как в вертикальном, так и в горизонтальном направлениях.

Диоксид углерода присутствует в воде, где он легко растворяется, образуя слабую угольную кислоту Н 2 СО 3 . Эта кислота вступает в реакции с кальцием и другими элементами, образуя минералы, называемые карбонатами. Карбонатные породы, например известняк, находятся в равновесии с диоксидом углерода, который содержится в контактирующей с ними воде. Аналогичным образом количество СО 2 , растворенного в океанах и пресных водах, определяется его концентрацией в атмосфере. Общее количество растворенных и осадочных углеродсодержащих веществ оценивается примерно в 1,8 трлн. т.

Углерод в соединении с водородом и другими элементами является одним из основных компонентов клеток растений и животных. Например, в организме человека он составляет ок. 18% массы тела. Многочисленность и очень широкое распространение живых организмов не позволяют удовлетворительно оценить общее содержание в них углерода. Можно, однако, приблизительно оценить суммарное количество углерода, связываемого растениями, а также выделяемого в процессе дыхания растений, животных и микроорганизмов. Установлено, что зеленые растения поглощают в год ок. 220 млрд. т CO 2 . Почти такое же количество этого вещества выделяется в неорганическую среду в процессе дыхания всех живых организмов, а также в результате разложения и сгорания органических веществ.

При определенных условиях разложения и сгорания созданных живыми организмами веществ не происходит, что ведет к накоплению углеродсодержащих соединений. Так, например, древесина живых деревьев может быть на 3–4 тысячелетия надежно защищена от микробного разложения и от пожара корой, способной противостоять действию микробов и огня. Древесина же, попавшая в торфяное болото, сохраняется еще дольше. В обоих случаях связанный в ней углерод оказывается как бы в ловушке и надолго выводится из круговорота. В условиях, когда органическое вещество оказывается захороненным и изолированным от воздействия воздуха, оно разлагается только частично и содержащийся в нем углерод сохраняется. Если впоследствии в течение миллионов лет эти органические остатки подвергаются давлению вышележащих отложений и нагреванию за счет земного тепла, значительная часть его превращается в ископаемое топливо, например в каменный уголь или нефть. Ископаемое топливо образует природный резерв углерода. Несмотря на интенсивное его сжигание, начавшееся с 1700-х годов, неизрасходованными еще остаются примерно 4,5 трлн. т.

Фотосинтез.

Основной путь, посредством которого углерод из мира неорганического перемещается в мир живого, – это осуществляемый зелеными растениями фотосинтез. Данный процесс представляет собой цепь реакций, в ходе которых растения поглощают из атмосферы или воды диоксид углерода, связывая его молекулы с молекулами специального вещества – акцептора СО 2 . В ходе других реакций, идущих с потреблением солнечной (световой) энергии, происходит расщепление молекул воды и использование высвобождающихся ионов водорода и связанного СО 2 в синтезе богатых углеродом органических веществ, в том числе акцептора СО 2 .

На каждую молекулу СО 2 , которую поглощает растение, чтобы синтезировать органические вещества, выделяется молекула кислорода, образованная при расщеплении воды. Предполагается, что именно таким путем образовался весь свободный кислород атмосферы. Если бы процесс фотосинтеза на Земле внезапно прекратился и нарушился углеродный цикл, то, согласно имеющимся расчетам, весь свободный кислород исчез бы из атмосферы примерно за 2000 лет.

Другие реакции.

Зеленое растение использует углерод образуемых им органических веществ разными способами. Например, он может накапливаться в составе крахмала, запасаемого в клетках, или целлюлозы – основного структурного материала растений и питательного вещества для многих других организмов. И крахмал и целлюлоза усваиваются в качестве пищи только после расщепления на составляющие их 6-углеродные сахара (т.е. сахара, содержащие по шесть атомов углерода в молекуле). В отличие от крахмала – нерастворимого высокомолекулярного соединения – 6-углеродные сахара легко растворимы и, перемещаясь по растению, служат источником энергии и материалом для роста и обновления клеток, а также для их восстановления в случае повреждений. Проростки, например, расщепляют запасенные в семени крахмал и жиры, получая из них более простые органические вещества, используемые в процессе клеточного дыхания (для высвобождения их энергии) и для роста.

У животных поглощенная пища подвергается аналогичному процессу переваривания. Прежде чем ее основные компоненты могут быть усвоены, они должны быть преобразованы: углеводы – в 6-углеродные сахара, жиры – в глицерин и жирные кислоты, белки – в аминокислоты. Эти продукты переваривания служат животному источниками энергии, высвобождаемой при дыхании, а также строительными блоками, необходимыми для роста организма и обновления его компонентов. Подобно растениям, животные способны переводить питательные вещества в форму, удобную для запасания. Аналог крахмала у животных – это гликоген, образуемый из излишков 6-углеродных сахаров и накапливаемый в качестве энергетического резерва в печени и мышечных клетках. Избыток сахара может превращаться также в жирные кислоты и глицерин, которые вместе с такими же веществами, поступающими с пищей, используются для синтеза жиров, накапливаемых в ткани. Таким образом, процессы синтеза обеспечивают запасание богатых углеродом и связанной энергией веществ, что позволяет организму выживать в периоды нехватки пищи.

После своей смерти растения и животные становятся пищей для т.н. редуцентов – организмов, осуществляющих разложение органического вещества. Большая часть редуцентов представлена бактериями и грибами, клетки которых выделяют наружу, в свое непосредственное окружение, небольшие количества пищеварительной жидкости, расщепляющей субстрат, а затем потребляют продукты такого «переваривания». Как правило, редуценты имеют ограниченный набор ферментов и соответственно используют в качестве пищи и источника энергии только немногие типы органических веществ. Обычные дрожжи, например, перерабатывают только 6- и 12-углеродные сахара, содержащиеся в разрушенных клетках перезрелых фруктов или в густом (с мякотью) соке, полученном при их раздавливании. Однако при достаточной длительности воздействия разнообразных редуцентов все углеродсодержащие вещества растений или животных в конце концов разрушаются до диоксида углерода и воды, а высвобожденная энергия используется организмами, осуществляющими разложение. Многие искусственно синтезированные органические соединения тоже подвержены биологическому разрушению (биодеградации) – процессу, в ходе которого редуценты получают энергию и необходимый строительный материал, а в атмосферу выделяется углерод в форме диоксида углерода.

Организмы, живущие за счет неорганического источника углерода (двуокиси углерода), называют автотрофными (автотрофами) (греч. autos - сам), а организмы, использующие органический источник углерода, - гетеротрофными (гетеротрофами) (греч. heteros - другой). В отличие от гетеротрофов автотрофы удовлетворяют все свои потребности в органических веществах, синтезируя их из простых неорганических соединений.

В табл. 9.1 представлены обе эти классификации - по источнику энергии и по источнику углерода. Хорошо видны их взаимоотношения. Кроме того, выявляется еще один очень важный принцип, а именно то, что хемотрофные организмы целиком зависят от фототрофных, которые поставляют им энергию, а гетеротрофные организмы полностью зависят от автотрофов, снабжающих их соединениями углерода.

Таблица 9.1. Классификация живых организмов в соответствии с основным источником углерода и энергии *

* (Большинство организмов относится к фотоавтотрофам или хемогетеротрофам. )

Самые важные группы - фотоавтотрофы (к которым относятся все зеленые растения) и хемогетеротрофы (все животные и грибы). Если на время пренебречь некоторыми бактериями, положение еще более упростится, и можно будет сказать, что гетеротрофные организмы в конечном счете зависят от зеленых растений, доставляющих им энергию и углерод. Иногда фотоавтотрофные организмы называют голофитными (греч. holos - целый, полный, phyton - растение).

9.1. Дайте определение, что такое фотоавтотрофное питание и хемогетеротрофное питание.

Игнорируя пока две меньшие группы (см. табл. 9.1), мы должны, однако, сразу же отметить, что жизнедеятельность хемосинтезирующих организмов тоже имеет очень важное значение - это мы увидим в разд. 9.10 и 9.11.

Несколько организмов нельзя всецело отнести к какой-то одной из четырех групп. Так, например, Euglena обычно ведет себя как автотроф, но некоторые виды могут жить как гетеротрофы и в темноте, если имеется источник органического углерода. Взаимоотношения между двумя главными категориями еще лучше представлены на рис. 9.1; здесь показано также, каким образом потоки энергии и углерода включаются в общий круговорот между живыми организмами и средой. Эти вопросы имеют важное значение для экологии (гл. 12).

Углерод высвобождается в процессе дыхания в виде СО 2 , а СО 2 затем снова превращается в процессе фотосинтеза в органические соединения. Более подробно круговорот углерода представлен на рис. 9.2, где показана и та роль, которую играют в этом процессе хемосинтезирующие организмы.


Рис. 9.2. Круговорот углерода. Жирными стрелками показан преобладающий путь (из двух возможных). По некоторым приблизительным оценкам действительное количество углерода составляет: В океане: (в основном в составе фитопланктона): 40·10 12 кг углерода в год фиксируется в процессе фотосинтеза в виде СО 2 . Большая часть его затем высвобождается при дыхании. На суше: 35·10 12 кг углерода в год фиксируется при фотосинтезе в виде СО 2 ; 10·10 12 кг углерода в год выделяется при дыхании растений и животных; 25·10 12 кг углерода в год выделяется при дыхании редуцентов; 5·10 12 кг углерода в год высвобождается при сжигании ископаемого топлива; этого количества вполне достаточно для постепенного увеличения концентрации двуокиси углерода в атмосфере и в океанах

9.2. Рассмотрите рис. 9.2. Какие типы питания представлены здесь а) на сером фоне и б) на белом фоне?

При рассмотрении химического состава растений отмечалось, что уг­лерод составляет почти половину их сухого вещества. Атомы углерода образуют скелет всех органических соединений, а способность их вступать в реакцию с другими элементами обусловливает огромное число этих соединений.

Опыты с водными культурами с большой достоверностью показали, что подавляющую часть углерода растения получают не из почвы. С дру­гой стороны, если поместить растение в атмосферу, очищенную от угле­кислого газа, например, под стеклянный колпак, в который воздух посту­пает только через слой натронной извести, то оно начнет обнаруживать признаки голодания. Это свидетельствует о том, что подавляющую часть потребности в углероде растения покрывают за счет углекислого газа ат­мосферы, составляющего 0,03% общего объёма воздуха.

Добывание растением из углекислого газа воздуха нужного им для
построения своего тела углерода представляет один из важнейших

процессов в жизни растения и всего органического мира. Животные и чело­
век не могут усваивать углерод непосредственно из углекислого газа и
для питания употребляют уже выработанные растением органические со­-
единения.

Организмы, использующие для питания углекислый газ воздуха, на­зываются автотрофными. Организмы, не способные усваивать углекислый газ воздуха и питающиеся за счет органических веществ, выработанных другими живыми существами, называются гетеротрофными. Кро­ме животных к ним принадлежат незеленые растения - грибы, бактерии, некоторые высшие растения и др.

Для того чтобы растение могло использовать углекислый газ возду­ха, необходимы совершенно определенные условия: свет и наличие хло­рофилла. Процесс образования органических веществ из неорганиче­ских - углекислого газа и воды, происходящий в зеленых растениях на свету, называется фотосинтезом, или ассимиляцией. Его можно выразить следующим схематическим уравнением:

Фотосинтез - это окислительно-восстановительный процесс: от мо­лекулы воды отнимается водород (окисление), который восстанавливает молекулу СО 2 . Исследования советских (А. Н. Виноградов, Р. В. Тейс) и американских (С. Рубен, М. Камен и др.) ученых показали, что сво­бодный кислород выделяется из молекулы воды, а не из молекулы угле­кислого газа, как это считалось раньше. Своеобразие фотосинтеза заклю­чается в том, что он, в отличие от подавляющего большинства других процессов, идет с увеличением свободной энергии системы. Поглощенная пигментами солнечная энергия не растрачивается, а накапливается в продуктах реакции в форме потенциальной химической энергии.



ЛИСТ КАК ОРГАН ФОТОСИНТЕЗА.

ХЛОРОПЛАСТЫ

Углекислый газ усваивается в зеленых пластидах клетки - хлоропластах. Следовательно, чтобы послужить материалом для синтеза угле­водов, углекислый газ должен быть поглощен клетками, содержащими хлоропласты. Такие клетки составляют основную массу листа - мезофилл. Сверху лист покрыт эпидермой и кутикулой, мало проницаемой для га­зов. Основной путь, по которому углекислый газ проникает внутрь лис­та, - устьица. Хотя площадь устьичных отверстий, даже когда они пол­ностью открыты, составляет незначительную часть всей листовой поверх­ности (не более 1%), диффузия газа через них, в соответствии с закона­ми физики (закон Стефана), идёт с большой скоростью и эпидерма не представляет почти никакого препятствия для проникновения углекисло­го газа внутрь листа. Мезофилл листа обычно состоит из палисадной (столбчатой) и губчатой паренхимы. Палисадная паренхима расположе­на на верхней стороне листа и состоит из плотно прилегающих друг к другу клеток, вытянутых перпендикулярно к поверхности листа и бога­тых хлоропластами. Эту ткань можно рассматривать как ассимиляцион­ную по преимуществу. Форма палисадных клеток способствует оттоку продуктов ассимиляции. Нижние концы клеток примыкают к особым со­бирающим клеткам, которые в свою очередь сообщаются с проводящими пучками. Благодаря этому устанавливается постоянный ток ассимилятов из листьев в другие органы растения. Губчатая паренхима находится ближе к нижней эпидерме. Клетки ее расположены рыхло и содержат значительно меньше хлоропластов. Считают, что эта ткань облегчает проветривание листа. Достигнув поверхности хлорофиллоносных клеток, углекислый газ растворяется в водe , которая всегда пропитывает их стенки. Затем уже в виде Н2СОз он диффундирует сквозь стенку, проникает в цитоплазму и достигает зеленых пластид, которыми поглощается.



Общая поверхность хлоропластов огромна. Так, в листе бука она при­мерно в 200 раз превышает его площадь и у столетнего дерева достига­ет 2 га. Это значительно облегчает растениям добывание углекислого га­за из воздуха. Хлоропласты состоят из белково-липидной стромы и пиг­ментов, легко извлекаемых органическими растворителями. Важнейший из пигментов - хлорофилл. Кроме хлорофилла, хлоропласты содержат желтые пигменты - каротиноиды (каротин и ксантофилл). Хлорофилл выпол­няет функцию поглощения световой энергии и переносит ее на восстанов­ление углекислоты, а также химически участвует в этом процессе. Одна­ко он функционирует только в сочетании со стромой. Строма является носителем ферментов, участвующих в сложных реакциях фотосинтеза. В строме из продукта фотосинтеза – сахара вырабатывается крахмал (первичный или ассимиляционный). Если затенить отдельные участки листа, то на светлом фоне получаются темные фигуры (проба Сакса).



Рнс. . Обнаружение первичного крахмала при помощи пробы Сакса. А-лист, час­тично затененный; Б - лист после обработки спиртом и йодом

По химической природе хлорофилл - сложный эфир дикарбоновой кислоты - хлорофиллина и двух спиртов - метилового и фитола р. Хлорофилл содержит четыре соединенных между собой остат­ка пиррола, которые образуют порфириновое кольцо, центральный атом которого - Mg. По строению хлорофилл весьма близок к красящему веществу крови - гему. В его состав также входит порфириновое кольцо, однако в центре расположен атом Fe. Это сходство было показано Ч. В. Ненцким и польским ученым Л. Мархлевским. К. А. Тимирязев считал установление этого сходства едва ли не самым крупным открыти­ем в области химического изучения хлорофилла.

Исследование многих сотен самых разнообразных видов высших рас­тений показало, что хлорофилл у них совершенно одинаковый. Общее количество хлорофилла в растениях составляет около 1 % от сухого веса. Хлорофилл в хлоропластах находится не в свободном виде, а связан с белком, образуя хлороглобин.

Для образования хлорофилла в растениях необходимо несколько со­вершенно определенных условий: присутствие пропластид, способных к позеленению, света и солей железа.

Развивающиеся в темноте растения имеют желтый цвет. Они назы­ваются этиолированными. Если их выставить на свет, они быстро зелене­ют. Считают, что они содержат особое вещество, называемое протохлорофиллом,_образуюшееся в.темноте_и_ под влиянием света_легко_ превращающееся в хлорофилл.

Если выращивать растения при полном отсутствии солей железа, то они тоже будут бледно-желтого цвета и быстро гибнут от истощения. Это явление называется хлорозом. Поскольку железо не входит в состав хлорофилла, считают, что оно служит специфическим катализатором, без которого не осуществляются какие-то подготовительные стадии по­зеленения. Хлороз часто наблюдается в природе, особенно у растений, растущих на почвах, богатых известью.

Кроме того, у растений иногда наблюдается явление альбинизма - неспособность образовывать хлорофилл даже при самых благоприятных для этого условиях.

УЧАСТИЕ ПИГМЕНТОВ В ПОГЛОЩЕНИИ СВЕТА. РАБОТЫ К. А. ТИМИРЯЗЕВА

Хлорофилл обладает избирательным поглощением световой энергии. Наиболее интенсивно поглощение происходит в красных лучах спектра (длина волны от 650 до 680 ммк) и сине-фиолетовых (длина волны око­ло 470 ммк). Зеленые лучи и часть красных не поглощаются, они и при­дают хлорофиллу изумрудно-зеленый цвет. Желтые пигменты - каро­тин и ксантофилл - поглощают свет в зеленой и синей частях спектра.

Энергетическая сторона процесса фотосинтеза глубоко вскрыта и разъяснена в работах К. А. Тимирязева. Он показал, что фотосинтез осу­ществляется только в лучах спектра, поглощаемых хлорофиллом. Даль­нейшие исследования полностью подтвердили это положение. Процесс фотосинтеза в различных частях спектра идет неодинаково. К. А. Тими­рязев показал, что максимум ассимиляции приходится на красные лучи, которые несут максимум энергии и полнее всего поглощаются хлоро­филлом. В сине-фиолетовых лучах ассимиляция идет слабее, так как они несут меньше энергии. Вопросу о значении в фотосинтезе отдельных час­тей спектра К. А. Тимирязев придавал большое принципиальное значе­ние. До него господствовало мнение, что свет служит только раздражи­телем. Этой точки зрения придерживались и современники К. А. Тимирязева немецкие ученые Ю. Сакс и В. Пфеффер. К.А. Тимирязев показал, что свет является источником энергии и необходим для фотосинтеза.

На возбуждение одной молекулы хлорофилла требуется один квант, поэтому в красных лучах, несущих большое число мелких квантов, большее число его молекул перейдет в возбужденное состояние

Кроме избирательного поглощения световой энергии, хлорофилл обладает свойством флуоресценции: в отраженном свете он кажется кроваво-красным, так как отражает поглощенные лучи с изменением длины их волны. Это указывает на значительную фотохимическую активность хлорофилла. Коэффициент поглощенной лучистой энергии в фотосинтезе чрезвычайно низок- 1%- 5%, редко до 10%. Большая часть переходит в тепловую энергию, либо повышает температуру и рассеивается в окружающем пространстве.

ХИМИЗМ ФОТОСИНТЕЗА

Несмотря на простоту суммарного уравнения фотосинтеза, этот про­цесс отличается чрезвычайной сложностью. Это обусловливается слож­ностью углеводной молекулы, которая не может сразу возникнуть из та­ких простых веществ, как СО 2 и Н 2 О; трудностью окисления и восста­новления этих прочных соединений; участием в реакциях световой энер­гии. Исследования показали, что фотосинтез включает не только несколь­ко фотохимических реакций, но и ряд ферментативных, так называемых темновых реакций.

Использование методов меченых атомов (изотопов С, Р, О, N), раз­делительной хроматографии на бумаге, электрофореза, ионообменной

Рис. 134. Цикл фотосинтетических превращений углерода по Кальвину

очистки и разделения и некоторых других позволило выявить химизм фотосинтеза.

Рядом работ установлено, что первым этапом усвоения углекислоты
является присоединение СО 2 к какому-то акцептору (веществу, воспри-
нимающему, присоединяющему другое вещество), карбоксилирова-

R Н + СО 2 _→ R СООН.

Таким образом, фотосинтетическому восстановлению подвергается углерод не углекислого газа, а карбоксильной группы. Широкие исследования по выяснению природы первичных акцепторов и путей фотосинтетического превращения углерода были проведены американским ученым Кальвином и его сотрудниками. Схема фотосинтетических превращений углерода, по Кальвину, представлена на рис. 134. Он считает, что процесс фотосинтеза носит циклический и разветвленный характер: одна ветвь этого цикла ведет к образованию прямых устойчивых продуктов фотосинтеза - углеводов, другая имеет циклический характер и приводит к образованию акцептора СО 2 - рибулезодифосфата, который вовлекает в фотосинтетический цикл все новые и новые молекулы СО 2 .

Наряду с этими сложными превращениями углерода за счет энергии света образуются богатые энергией органические соединения фосфора, в. частности аденозинтрифосфат (АТФ). Этот процесс называется фотосинтетическим фосфорилированием:

Аденозинтрифосфорная кислота (АТФ)

Энергия макроэргических (богатых энергией, ~) фосфатных связей АТФ идет на восстановительные процессы. При гидролизе макроэргических связей освобождается 7000-16 000 кал на грамм-молекулу.отщеп­ленного фосфата.

К световым реакциям фотосинтеза относится:

1) разложение воды (активированный хлорофилл + 2Н 2 О-инактивированный хлорофилл + +4Н+2О),

2) фотосинтетическое фосфорилирование,

3) синтез амино­кислот и белков.

К темповым реакциям фотосинтеза относятся:

1) фиксация СО 2 ак­цептором,

2) перенос активного водорода на соединение, в котором фик­сирована молекула СО 2 ,

3) восстановление акцептора СО 2 ,

4) образова­ние Сахаров.

Приведенное описание фотосинтетического превращения углерода да­леко не исчерпывает всей сложности этого процесса. В частности, счи­тают, что акцептором СО 2 может быть не только рибулезодифосфат, но и другие соединения.

МИНЕРАЛЬНОЕ ПИТАНИЕ РАСТЕНИЙ

ВЕЩЕСТВА, ПОЛУЧАЕМЫЕ РАСТЕНИЯМИ ИЗ ПОЧВЫ

Нет ни одного элемента, который бы не был обнаружен в растениях. Элемент может быть случайной примесью и накапливаться в растениях в больших количествах, или же находиться в нем в ничтожно малом количестве, но безусловно необходим. Установлено, что растение может успешно развиваться, если в питательном растворе находится лишь семь элементов: К, Са, Mg, S, Fe, N и Р. Это мнение держалось в науке более 50 лет, но было установлено, что многие другие элементы играют важную роль в жизни растений. Было установлено, что для нормального роста и развития растений необходимы в ничтожно малых количествах Mg, Zn, Cu, Al, I, Md и др.

Получаемые растениями из почвы вещества по химической природе можно разделить на две группы: металлоиды и металлы.

Металлоиды поступают в растения в виде анионов соответствующих солей. Они необходимы для образования органических веществ. Металлы поступают в растения в виде катионов. Они находятся в клетках в свободном состоянии или слабосвязанном и служат регуляторами жизненных процессов. Например, магний входит в состав хлорофилла, железо и медь- ферментов и т, д.

МЕТАЛЛОИДЫ

Азот. Поступает в растение в виде анионов NO3 и NO2, так и виде катиона NН4. Его значение в жизни растений очень велико.

Фосфор воспринимается растениями в виде анионов солей фосфорной кислоты РО4 .В белковые молекулы он входит в той же окисленной форме. В растениях образуются сложные эфиры фосфорной кислоты и фосфатиды которые являются необходимой составляющей цитоплазмы как и белки. Фосфор стоит в центре всего энергетического обмена клетки. Витамины и некоторые ферменты проявляют свое действие лишь в соединении с фосфорной кислотой.

При разложении растительных остатков фосфорная кислота высвобождается в виде неорганических солей и может снова использоваться растениями.

Сера усваивается лишь в виде аниона серной кислоты SO4, источником ее служат растворимые соли. Используется для синтеза белка за счет продуктов фотосинтеза- углеводов, входит в состав горчичных и чесночных масел, участвует в дыхании и росте.

При перегнивании растительных остатков сера отщепляется от белковой молекулы в виде сероводорода, который не усваивается растениями и очень ядовит для корней. В пригодную форму он переводится серобактериями, окисляющими сероводород и серную кислоту.

Калий содержится в клетках меристемы и молодых органах. Много калия в корнеплодах, клубнях, крахмалистых семенах. Калий обладает большой подвижностью. Из старых, отмирающих органов передвигается в более молодые жизнедеятельные части растения(реутилизация). Калийные удобрения почти всегда оказывают благоприятное воздействие на урожайность сельскохозяйственных культур.

Натрий присутствует в золе растений часто в больших количествах, однако особого значения для жизнедеятельности не имеет и может быть исключен из питательного раствора. Только голофиты- растения, свойственные засоленным почвам, лучше растут в присутствии солей натрия. Из культурных растений к этому типу относятся сахарная свекла, дикий предок которой произрастает на засоленных почвах Средиземного моря.

Магний содержится преимущественно в молодых органах и семенах (до 10-15% золы). Физиологическое действие его близко к действию калия. Магний входит в состав некоторых металлоорганических соединений, в частности хлорофилла, он может активизировать действие некоторых ферментов. Влияние магния зависит от состава почвы. Резко отзываются на внесение магнезиальных удобрений растения, растущие на легких песчаных и супесчаных почвах.

Кальций необходим для роста молодых тканей. Он входит в состав цитоплазматических структур и ядер. Соединения кальция с пектиновыми веществами составляют основу срединных пластинок, склеивающих стенки клеток друг с другом. Многие ферменты активны лишь в присутствии ионов кальция. Он способствует увеличению вязкости цитоплазмы и влияет на поступление веществ в клетку. Одна из важных функций кальция – нейтрализация щавелевой кислоты, образующейся как побочный продукт обмена веществ. При отсутствии кальция наблюдается резкое угнетение корневой системы, Особенно много кальция в старых органах.

МИКРОЭЛЕМЕНТЫ

Микроэлементы необходимы растениям в ничтожно малых количествах и в больших дозах становятся ядовитыми.

Железо участвует в образовании хлорофилла как катализатор. Оно входит в состав окисленных ферментов, играет чрезвычайную роль в процессе дыхания. Возможно железо участвует в процессе фотосинтеза и окислительно-востановительных процессах в клетке как переносчик электронов.

Цинк входит в состав некоторых ферментов. При отсутствии цинка наблюдается угнетение роста молодых проростков, заболевание цитрусовых и тунга.

Марганец активизирует работу многих ферментов, играет большую роль в восстановлении нитратов в растении, влияет на окислительно-востановительные процессы превращения железа. Для нормального роста растениям необходимо ничтожно малое количества марганца, поэтому внесение марганцевых удобрений не всегда дает положительный результат. Отзывчивы на такие удобрения сахарная свекла, хлопчатник, табак и другие культуры.

Бор при его недостатке у растений отмирают точки роста., нарушается расположение элементов ксилемы и флоэмы и полная потеря ими проводимости. Бор благоприятно влияет на цветение и плодоношение. Борные удобрения необходимы на известковый почвах. Очень отзывчивы на эти удобрения сахарная свекла, бобовые травы. При повышенных концентрациях он оказывает угнетающее действие на растения.

Медь оказывает влияние на окислительно-востановительную систему, входит в состав ряда ферментных систем.

При недостатке того или иного элемента у растений наблюдаются определенные симптомы повреждений, по которым можно определить, какого элемента не хватает. Так, хлороз листьев показывает на нехватку железа, отмирание корней- недостаток кальция, отмирание точек роста на недостаток бора. Однако такая диагностика улавливает далеко зашедшую форму голодания, которую внесением удобрений уже не исправить.

ПЕРЕДВИЖЕНИЕ ВЕЩЕСТВ В РАСТЕНИЯХ.

ВОДНЫЙ РЕЖИМ РАСТЕНИЙ. ДЕЙСТВИЕ НА РАСТЕНИЯ ВЫСОКИХ И НИЗКИХ ТЕМПЕРАТУР


ДВА ТОКА ВЕЩЕСТВ В РАСТЕНИИ

Существование организма растения как единого целого, физиологи­ческая взаимосвязь отдельных органов, расположенных в неодинаковых физических средах и выполняющих различные функции, возможны лишь при условии передвижения минеральных и органиче­ских веществ.

Факт передвижения веществ в растении по двум на­правлениям был установлен еще в 1679 г. Мальпиги путем кольцевания. Если удалить со стебля участок коры в виде кольца, то листья на нем остаются живы­ми и не обнаруживают никаких признаков завядания, а плоды бывают даже больше, чем на не окольцованных ветвях. Это показывает, что передвижение воды и минеральных веществ из почвы осуществляется по древесине (ксилеме). Этот ток веществ был назван вос­ходящим. У верхнего же края кольцевого выреза про­исходит застой питательных веществ и разрастание тканей коры в виде наплыва. Если наплыв не восстановит удаленную часть коры, то корни отми­рают от истощения и все растение погибает. Значит, пластические вещества из листьев в корень передвига­ются по коре (в основном по флоэме). Этот ток ве­ществ был назван нисходящим.

Очень долго в науке держалось мнение, что по фло­эме передвигаются только органические вещества, а по ксилеме - только вода и минеральные вещества. Одна­ко исследования последних лет с применением метода меченых атомов показали, что по флоэме могут пере­двигаться не только органические, но и минеральные вещества. В основном это калий, фосфор, частично кальций. Причем эта миграция может осуществляться в любом направлении. После того как было доказано, что в корне тоже синтезируются органические вещества, стало ясно, что и по ксилеме вверх передвигаются не только минеральные, но и органические вещест­ва. Кроме того, установлено, что минеральные и органические вещества из корня могут подниматься вверх по флоэме.

Законы, управляющие передвижением органических веществ, до сих пор изучены мало. Исследования показали, что скорость передвижения органических веществ во много раз больше скорости диффузии, что про­водящие пучки отличаются очень интенсивным дыханием и что клетки флоэмы способны не только проводить органические вещества, но и под­вергать их различным превращениям. Это позволило сделать предполо­жение, что органические соединения перемещаются по флоэме не вслед­ствие пассивного перетекания растворов или диффузии, а в результате каких-то обменных реакций, непрерывно происходящих в ситовидных трубках между цитоплазмой и передвигающимися молекулами.

ПЕРЕДВИЖЕНИЕ ВОДЫ В РАСТЕНИИ

Путь, который проходит вода в растении, делится на две части: 1) по живым клеткам от корневого волоска до сосудов центрального цилиндра корня и от сосудов листа до клеток мезофилла, испаряющих воду в меж­клетники; 2) по мертвым клеткам проводящей системы - сосудам и трахеидам.

Путь воды по живым клеткам исчисляется миллиметрами, однако он представляет большие трудности, так как при переходе от одной клетки к другой вода встречает значительное сопротивление, поэтому этим спо­собом вода не может передаваться на большие расстояния. Большую часть пути вода проходит по мертвым, пустым, вытянутым в длину клет­кам - трахеидам или же по полым трубкам - сосудам.

Поглощение воды и ее перемещение вверх осуществляется в результа­те совместного действия следующих факторов: корневого давления (ниж­ний концевой двигатель), транспирации (верхний концевой двигатель), сил сцепления молекул воды.

Жидкость, вытекающая при плаче растений, назы­вается пасокой. Химический состав ее непостоянен. Весной, когда про­исходит гидролиз запасных углеводов, она богата сахарами, органиче­скими кислотами и содержит мало минеральных веществ. Выделение капельно-жидкой воды может происходить и через листья, через особые водяные устьица - гидатоды Это явление получило на­звание гуттации. Гуттация происходит в умеренно теплой и влажной, насыщенной водяными парами атмосфере, когда возникает диспропор­ция между поступлением воды и ее испарением. Наиболее часто она встречается у растений тропической и субтропической зон и иногда про­исходит с такой силой, что создает впечатление дождя. Из растений уме­ренной зоны активно гуттируют ива, картофель, гречиха и др. Плач ра­стений и гуттация не являются только осмотическими процессами, так как они прекращаются при действии на корни веществами, ингибирующими дыхание. Прежде чем попасть в сосуд корня, вода, поглощенная корневым во­лоском, должна проделать путь по живым клеткам коровой паренхимы. Согласно Д. А. Сабинину, такой односторонний ток воды возможен только при различии в обмене веществ в разных частях клет­ки, при котором на одном полюсе клетки образуется больше тургорогенных веществ, чем на другом, а следовательно, возникают большее осмо­тическое давление и большая сосущая сила. Поступление воды из клеток в сосуды происходит вследствие того, что раствор, находящийся в сосудах, обладает большей сосущей силой, чем близлежащие клетки. Со­суды - это мертвые клетки без цитоплазмы и их сосущая сила равна всей величине осмотического давления раствора (S = P), в то время как в живых клетках существует еще тургорное давление и S = P-Т. Вода, находящаяся в сосудах и трахеидах, имеет вид тонких нитей, которые своими нижними концами упираются в паренхимные клетки корня, а верхними - как бы подвешены к испаряющим клеткам листа. Для того чтобы вода передвигалась вверх, необходимо, чтобы испаряющие клетки обладали достаточной сосущей силой, которая тем больше, чем сильнее испарение. В клетках листьев древесных растений она достигает 10- 15 атм.

Однако, как показал русский ученый Е. Ф. Вотчал, поднятие воды на большую высоту по сосудам возможно лишь при условии существования непрерывных водных нитей, которое обеспечивается силами сцепления молекул воды между собой и со стенками сосудов. Сила сцепления до­стигает 300-350 атм.

ТРАНСПИРАЦИЯ

Испарение воды растением не только чисто физический, но и физио­логический процесс, так как на него большое влияние оказывают анато­мические и физиологические особенности растения. Этот процесс назван тринспирацией.

Испарение воды в листе происходит с поверхности клеток мезофилла, По вычислениям Тэррела, эта поверхность у растений умеренно влаж­ных местообитаний в 12-19 раз превышает наружную поверхность листьев, а у растений засушливых местообитаний - в 17-30 раз. Паро­образная вода попадает в межклетники и через устьичные щели диффун­дирует наружу. Такая транспирация называется устьичной. Площадь устьичных щелей составляет около 1 % общей площади листа. Однако, как уже отмечалось в отношении диффузии газа при фотосинтезе, диффу­зия пара через устьица идет с той же скоростью, с какой она шла бы при отсутствии эпидермы. Одна из важнейших особенностей устьичного ап­парата - способность открывать и закрывать устьичные отверстия. Стенка замыкающих клеток имеет неодинаковую толщину: часть стенки, примыкающая к щели, значительно утолщена, в то время как остальная часть стенки остается тонкой. Это приводит к тому, что при насасывании воды тонкая наружная часть стенки растягивается значи­тельно больше, чем толстая, кривизна клеток увеличивается, и щель рас­крывается. При уменьшении объема замыкающей клетки тонкая стенка распрямляется, и щель закрывается. В основе процесса, обусловливаю­щего изменение тургора в замыкающих клетках, лежит превращение крахмала в сахар и обратно, которое вызывается изменением хода фер­ментативных реакций. Большое влияние на открывание устьиц

Рис. 143. Изменение транспирации в зависимости от изменения основных метеорологи­ческих показателей в течение дня:

/ - обшая солнечная радиация, 2 - дефицит насыщения, 3 - температура, 4 - интенсивность

транспирации

оказывает свет. На свету устьица закрываются лишь с большим трудом. Это фото­активное открывание устьиц носит приспособительный характер: через устьица проникает в лист углекислый газ и для процесса фотосинтеза необходимо, чтобы устьица были открыты в светлые часы суток. Поль­зуясь различными методами, можно проследить за ходом устьичных дви­жений в течение суток. В ясную не очень жаркую и сухую погоду у боль­шинства растений устьичные щели открываются на рассвете, наиболее широко они раскрыты в утренние часы, к полудню они начинают сужать­ся и закрываются несколько раньше захода солнца. В сухую и жаркую погоду устьичные щели к полудню закрываются полностью, а к вечеру опять открываются. У разных растений устьица ведут себя неодинаково. Так, у картофеля, капусты и некоторых других растений устьица обычно открыты круглые сутки, у хлебных злаков устьица на ночь закрываются. Большинство растений в этом отношении занимает промежуточное поло­жение. Движение устьичного аппарата в зависимости от внешних усло­вий весьма сложны и не всегда поддаются учету.

Наряду с устьицами в испарении воды участвует и вся поверхность листьев, несмотря на то, что она покрыта кутикулой. Эта форма транспи­рации называется кутикулярной. У взрослых листьев кутикулярная транспирация в 10-20 раз слабее, чем устьичная.

Транспирация имеет следующее значение: 1) создает непрерывный ток воды, 2) облегчает передвижение минеральных веществ от корня к листьям, 3) защищает листья от перегрева.

Количество воды, которое растение пропускает через себя, огромно. Одно растение подсолнечника или кукурузы за вегетационный период испаряет более 200 кг воды.

Транспирация зависит от метеорологических условий: температуры воздуха, света, ветра, дефицита насыщения воздуха парами воды, а так­же от количества воды в растении. В результате получаются те сложные кривые, которые характеризуют суточный ход этого процесса в природе (рис. 143). Опыты показали, что для нормального развития растения не нужда­ются в том огромном количестве воды, которое они теряют в естествен­ных условиях и что транспирация очень часто может быть сокращена с пользой для них. Так, наиболее пышное развитие растений наблюдается во влажном тропическом климате, где влажность почвы и воздуха очень высоки. В оранжереях растения растут лучше, если поддерживать влаж­ность на возможно более высоком уровне. Даже в полевой культуре применяют освежительные поливы дождеванием в целях повышения влажности воздуха и снижения транспирации.

ВОДНЫЙ БАЛАНС РАСТЕНИЙ

Растения, живущие на суше, должны поддерживать цитоплазму кле­ток в достаточно насыщенном водой состоянии. Поэтому они имеют ряд особенностей в своем строении, которые, с одной стороны, обеспечивают снижение количества теряемой воды (кутикула, покрывающая все над­земные части, восковой налет, волоски и т. д.), а с другой - быструю по­дачу воды из почвы к листьям (мощная корневая система, хорошо раз­витая проводящая система и т. д.). В то же время, чтобы успешно шел процесс фотосинтеза, необходим тесный контакт хлорофиллоносных кле­ток с окружающей атмосферой. Это приводит к непрерывному испаре­нию воды клетками, которое усиливается нагреванием листа вследствие поглощения хлорофиллом солнечной энергии, также необходимой для фотосинтеза. Это глубокое внутреннее противоречие между углеродным питанием и водным режимом К. А. Тимирязев назвал «необходимым злом», так как в условиях засухи оно может привести к гибели растения. Это противоречие кладет глубокий отпечаток на строение растений и на всю их жизнедеятельность.

Одно из важнейших условий нормального функционирования высших наземных растений - сведение водного баланса, т. е. соотношения меж­ду приходом и расходом воды, без длительного и глубокого дефицита. В умеренно влажные и не слишком жаркие дни это условие выдержива­ется. Но в ясные летние дни к полудню транспирация настолько увели­чивается, что возникает водный дефицит, который при достаточной влажности почвы достигает 5-10%, а при недостатке влаги в почве воз­растает до 25% и более. Это вполне нормальное явление. Дальнейшему увеличению водного дефицита препятствует способность растений под влиянием потери воды регулировать свою транспирацию в довольно ши­роких пределах.

Однако эта регуляция имеет свои границы и при значительном воз­растании транспирации и иссушении почвы наступает резкое нарушение водного баланса, которое внешне выражается в завядании. При этом клетки теряют тургор, листья, и молодые побеги повисают вниз. Завядаиие еще не означает утрату растением жизнедеятельности. Если растение своевременно снабдить водой, то тургор восстанавливается. Различают два типа завядания растений: временное и длительное. Первое наблюда­ется при сильном возрастании транспирации, когда поступающая из почвы вода не успевает покрывать ее трату. При этом листья, больше всего расходующие воду, теряют тургор и вянут, а остальные органы растения содержат еще достаточное количество воды. При ослаблении транспирации, например к вечеру, водный дефицит исчезает и растение оправляется без добавочного увлажнения почвы. Большого вреда расте­ниям временное завядание не приносит, но все же снижает урожай, так как приостанавливает фотосинтез и рост. Длительное завядание наблю­дается, когда почва не содержит достаточного количества доступной для растений воды. При этом водный дефицит за ночь не исчезает, и к утру: растения оказываются не вполне насыщенными водой и не в состоянии нормально функционировать. В этих условиях тургор постепенно падает во всех органах растения, вплоть до корневых волосков, так как завяд­шие листья, обладая большой сосущей силой, оттягивают от них воду. Корневые волоски отмирают, поэтому даже при обильном поливе расте­ния восстанавливают прежнюю скорость водоснабжения только через несколько дней, когда образуются новые корневые волоски. Исследова­ния Н. А. Максимова, Н. М. Сисакяна и других показали, что завядание вызывает глубокое влияние на состояние биоколлоидов клетки, которое ведет к нарушению обмена веществ. Процессы гидролиза усиливаются, синтетические процессы задерживаются. Это отражается на всех физио­логических функциях растения - фотосинтезе, дыхании, передвижении веществ, росте и т. д. Урожай падает, зерно получается щуплым. Дли­тельное завядание вызывает необратимые изменения, и клетки в конце концов отмирают даже при возобновлении водоснабжения. В то же вре­мя завядание - весьма действенный способ задержать транспирацию в наиболее опасные для растения периоды. В завядшем состоянии потеря воды растением в 5-10 раз меньше, чем в благоприятном периоде.

У разных растений завядание наступает при потере неодинакового количества воды. Так, подсолнечник и картофель не завядают при потере 25-30% воды, а другие растения, особенно теневые, завядают уже при потере 2-3% воды. Соотношение между добыванием и расходом воды зависит от многих факторов. Это обусловливает чрезвычайное разнообра­зие типов наземных растений по отношению к водному режиму.

ДЕЙСТВИЕ НА РАСТЕНИЯ НЕДОСТАТКА ВЛАГИ

И ВЫСОКИХ ТЕМПЕРАТУР.

ЗАСУХОУСТОЙЧИВОСТЬ И ЖАРОСТОЙКОСТЬ

Засуха - это резкое проявление недостатка влаги, приводящее к на­рушению водного режима растений. Засуха бывает атмосферная и поч­венная. Атмосферная засуха характеризуется высокой температурой и малой относительной влажностью воздуха (10-20%). Она приводит к завяданию растений. Сопровождающая атмосферную засуху высокая тем­пература воздуха вызывает сильный нагрев растений. Большие повреж­дения растениям наносят суховеи - очень сухие горячие ветры. При этом высыхает и отмирает значительная часть листьев. При атмосферной засухе корневая система остается неповрежденной. При большой про­должительности атмосферная засуха вызывает иссушение почвы - поч­венную засуху. Она более опасна для растения, так как приводит к дли­тельному завяданию. Уже отмечалось, что завядание растений нарушает обмен веществ и значительно снижает урожайность.

Разные части растений реагируют на засуху неодинаково. Так, умень­шение содержания воды в листьях приводит к повышению их сосущей силы, и они начинают отсасывать воду от конусов нарастания стебля, бутонов и завязавшихся плодов. Это вызывает гибель цветков или их стерильность, образование щуплого зерна - захват. Верхние листья дольше сохраняют свою жизнедеятельность при засухе, чем нижние, так как оттягивают от них воду. Эта особенность верхних листьев объясня­ется тем, что они находятся в условиях несколько затрудненного водо­с

А. ускорение световых и темновых реакций фотосинтеза

Б. использование световой энергии для синтеза органических веществ

В. расщепление органических веществ до неорганических

Г. участие в реакциях синтеза белка на рибосомах

Какой из перечисленных процессов происходит в световую фазу фотосинтеза?

А. образование глюкозы Б. синтез АТФ

В. поглощение CO 2 Г. все перечисленное

Назовите в хлоропласте участок, где происходят реакции темновой фазы фотосинтеза

А. наружная мембрана оболочки Б. вся внутренняя мембрана оболочки

В. граны Г. строма

30. Об условиях жизни древесных растений в разные годы можно узнать по толщине

А. Коры Б. Пробки

В. Лубяных волокон Г. Годичных колец

31. В пробирке с раствором хлорофилла фотосинтез не происходит, так как для этого процесса необходим набор ферментов, расположенных на

А. Кристах митохондрий Б. Гранах хлоропластов

В. Эндоплазматической сети Г. Плазматической мембране

Какие почки развиваются на листьях и корнях цветковых растений?

А. Придаточные Б. Верхушечные В. Пазушные Г. Боковые

33. Источником углерода, используемого растениями в процессе фотосинтеза, служит молекула

А. Угольной кислоты Б. Углеводорода

В. Полисахарида Г. Углекислого газа

Для улучшения дыхания корней культурных растений необходимо

А. Проводить прополку сорняков

Б. Систематически поливать растения

В. Периодически рыхлить почву вокруг растения

Г. Периодически подкармливать растения минеральными удобрениями

35. Приспособление растений к уменьшению испарения воды – наличие

А. Устьиц на верхней стороне листа

Б. Большого числа листовых пластинок

В. Широких листовых пластинок

Г. Воскового налета на листьях

36. Видоизмененный подземный побег многолетних растений с утолщенным стеблем, почками, придаточными корнями и чешуевидными листьями – это

А. Главный корень Б. Корневище

В. Боковой корень Г. Корнеклубень

Подземный побег отличается от корня наличием у него



А. Вегетативных почек

Б. Зоны проведения

В. Зоны всасывания

Г. корневых волосков

38. Какие удобрения усиливают рост зеленой массы растений?

А. Органические Б. Азотные

В. Калийные Г. Фосфорные

39. Свойство органов растений изгибаться под влиянием силы земного притяжения называют

А. Гидротропизмом Б. Фототропизмом

В. Геотропизмом Г. Хемотропизмом

40. Внешним сигналом, стимулирующим наступление листопада у растений, служит

А. Увеличение влажности среды

Б. Сокращение длины светового дня

В. Уменьшение влажности среды

Г. Повышение температуры среды

41. Затопление ранней весной полей пшеницы талыми водами иногда приводит к гибели всходов, так как при этом нарушается процесс

А. Фотосинтеза из-за недостатка кислорода

Б. Дыхания из-за недостатка кислорода

В. Поглощения воды из почвы

Г. Испарения воды

Часть В

В1(выберите несколько верных ответов из шести)

Значение транспирации

А. регулирует газовый состав внутри листа

Б. способствует передвижению воды

В. обеспечивает привлечение опылителей

Г. улучшает транспорт углеводов

Д. регулирует температуру листьев

Е. снижает удельный вес листвы

В2(выберите несколько верных ответов из шести)

Корневой чехлик выполняет функции

А. обеспечивает отрицательный геотропизм

Б. обеспечивает положительный геотропизм

В. облегчает проникновение корня в почву

Г. запасает питательные вещества

Д. защищает активно делящиеся клетки

Е. участвует в транспорте веществ

В3. Выберите несколько верных ответов

В чем состоит значение фотосинтеза?

А. в обеспечении всего живого органическими веществами

Б. в расщеплении биополимеров до мономеров

В. в окислении органических веществ до углекислого газа и воды

Г. в обеспечении всего живого энергией

Д. в обогащении атмосферы кислородом, необходимым для дыхания

Е. в обогащении почвы солями азота

В4. Установите соответствие между наиболее важными процессами и фазами фотосинтеза

В5. Установите правильную последовательность процессов фотосинтеза

А. возбуждение хлорофилла

Б. синтез глюкозы

В. соединение электронов с НАДФ + и Н +

Г. фиксация углекислого газа

Д. фотолиз воды

В6. Выберите несколько верных ответов

Выберите процессы, происходящие в световую фазу фотосинтеза

А. фотолиз воды Б. синтез углеводов

В. фиксация углекислого газа Г. синтез АТФ

Д. выделение кислорода Е. гидролиз АТФ

В7. Выберите несколько верных ответов

В темновую фазу фотосинтеза в отличие от световой происходит

А. фотолиз воды

Б. восстановление углекислого газа до глюкозы

В. синтез молекул АТФ за счет энергии солнечного света

Г. соединение водорода с переносчиком НАДФ +

Д. использование энергии молекул АТФ на синтез углеводов

Е. образование молекул крахмала из глюкозы

В8. Выберите несколько верных ответов

Органическое вещество состоит на 45% из углерода. Поэтому вопрос об источнике питания организмов углеродом чрезвы­чайно важен. Все организмы делят на автотрофные и гетеротрофные. Автотрофные организмы характеризуются способностью в качестве источника углерода использовать его минеральные формы, то есть синтезировать орга­ническое вещество из неорганических соединений. Гетеротрофные организмы строят органическое вещество своего тела из уже имеющихся готовых органиче­ских соединений, то есть используют органические соединения как источник углерода. Для того, чтобы осуществить синтез органического вещества, необходима энергия. В зависимости от используемого соединения, а также от источников энергии, различают следующие основные типы питания углеродом и построения органических веществ.

Типы углеродного питания организмов

Из всех перечисленных типов питания углеродом фотосинтез зеленых расте­ний, при котором построение органических соединений идет за счет простых неорганических веществ (СО 2 и Н 2 О) с использованием энергии солнечного све­та, занимает совершенно особое место. Общее уравнение фотосинтеза:

6СО 2 + 12Н 2 О = С 6 Н 12 О 6 + 6О 2 + 6Н 2 О

Фотосинтез – это процесс, при котором энергия солнечного света превра­щается в химическую энергию. В самом общем виде это можно представить сле­дующим образом: квант света (hv) поглощается хлорофиллом, молекула которого переходит в возбужденное состояние, при этом электрон переходит на более вы­сокий энергетический уровень. В клетках фотоавтотрофов в процессе эволю­ции выработался механизм, при котором энергия электрона, возвращающегося на основной энергетический уровень, превращается в химическую энергию.

В процессе фотосинтеза из простых неорганических соединений (СО 2 , Н 2 О) строятся различные органические вещества. В результате происходит перестройка химических связей: вместо связей С–О и Н–О возникают связи С–С и С–Н, в которых электроны занимают более высокий энергетический уровень. Таким обра­зом, богатые энергией органические вещества, которыми питаются и за счет кото­рых получают энергию (в процессе дыхания) животные и человек, первоначально создаются в зеленом листе. Можно сказать, что практически вся живая материя на Земле является результатом фотосинтетической деятельности.

Почти весь кислород атмосферы фотосинтетического происхождения. Процессы дыхания и горения стали воз­можны только после того, как возник фотосинтез. Возникли аэробные организмы, способные усваивать кислород. На поверхности Земли про­цессы приняли биогеохимический характер, произошло окисление соединений железа, серы, марганца. Изменился состав атмосферы: содержание СО 2 и аммиака снизилось, а кислорода и азота возросло. Возникновение озонового эк­рана, который задерживает опасную для живых организмов ультрафиолетовую радиацию, также является следствием появления кислорода.

Для того, чтобы процесс фотосинтеза протекал нормально, к хлоропластам должен поступать СО 2 . Основным поставщиком служит атмосфера, где количество СО 2 составляет 0,03%. Для образования 1 г сахара необходимо 1,47 г СО 2 – такое количество содержится в 2500 л воздуха.

Углекислый газ поступает в лист растения через устьица. Некоторое количество СО 2 поступает непосредственно через кутикулу. При закрытых устьицах диффузия СО 2 в лист резко сокращается.

Наиболее примитивная организация фотосинтетиче­ского аппарата у зеленых бактерий и цианобактерий. У этих организмов функцию фотосинтеза выполняют внутрицитоплазматические мембраны или особые структуры – хлоросомы, фикобилисомы. У водорослей уже эволюционно возникли органеллы (хроматофоры), в которых сосредоточены пигменты, они разнообразны по форме (спиральные, лентовидные, пластинчатые, звездчатые). Высшие растения харак­теризуются вполне сформировавшимся типом пластид в форме диска или двоя­ковыпуклой линзы. Приняв форму диска, хлоропласты становятся универсаль­ным аппаратом фотосинтеза. Фотосинтез протекает в зеленых пластидах – хлоропластах. В лейкопластах синтезируется и отлагается в запасной крахмал, в хромопластах накапливаются каротиноиды.

Размер дисковидных хлоропластов высших растений колеблется от 4 до 10 мкм. Число хлоропластов обычно составляет от 20 до 100 на клетку. Химический состав хлоропластов достаточно сложен и может быть охарактеризован следующими средними данными (% на сухую массу): белок – 35-55; липиды – 20-30; углеводы – 10; РНК – 2-3; ДНК – до 0,5; хлорофилл – 9; каротиноиды – 4,5.

В хлоропластах сосредоточены ферменты, при­нимающие участие в процессе фотосинтеза (окислительно-восстановительные, синтетазы, гидролазы). В хлоропластах, так же как и в митохондриях, имеется своя белоксинтезирующая система. Многие из ферментов, локализованных в хлоропластах, являются двухкомпонентными. Во многих случаях простетическая группа ферментов – это различные витамины. В хлоропластах сосредоточены многие витамины и их производные (витамины группы В, К, Е, D). В хлоропластах находится 80%Fe, 70%Zn, около 50% Сuот всего количества этих элементов в листе.

Хлоропласты окружены двойной мембраной. Толщина каждой мембраны 7,5-10 нм, расстояние между ними 10-30 нм. Внутреннее пространство хлоропластов заполнено бесцветным содержимым – стромой и пронизано мембранами. Мембраны, соединенные друг с другом, образуют плоские замкнутые полости (пузырьки) – тилакоиды (греч. «тилакоидес» – мешковидный). В хлоропластах содержатся тилакоиды двух типов. Короткие тилакоиды собраны в пачки и расположены друг над другом, напоминая стопку монет. Эти стопки называются гранами, а составляющие их тилакоиды – тилакоидами гран. Между гранами параллельно друг другу располагаются длин­ные тилакоиды – тилакоиды стромы. Между отдельными тилакоидами в стопках гран имеются узкие щели. Тилакоидные мембраны содержат большое количество белков, участвующих в фотосинтезе. В составе интегральных мембранных белков имеется много гидрофобных аминокислот. Это создает безводную среду и делает мембраны стабильнее.

Для того, чтобы световая энергия могла быть использована в процессе фотосинтеза, необходимо ее погло­щение фоторецепторами – пигментами. Фотосинтетические пигменты – это вещества, которые поглощают свет определенной длины волны. Не поглощенные участки солнечного спектра отражаются, что и обусловливает окраску пигментов. Так, зеленый пигмент хлорофилл поглощает красные и синие лучи, тогда как зеле­ные лучи, в основном, отражаются. Видимая часть солнечного спектра включает длины волн от 400 до 700 нм.

Состав пигментов зависит от систематического положения группы организмов. У фотосинтезирующих бактерий и водорослей пигментный состав разнообразен (хлорофиллы, бактериохлорофиллы, бактерио­родопсин, каротиноиды, фикобилины). Их набор и соотношение специфичны для различных групп организмов. Пигменты, сконцен­трированные в пластидах, можно разделить на три группы: хлорофиллы, каротиноиды, фикобилины.

Важнейшую роль в процессе фотосинтеза играют зеленые пигменты –хлорофиллы. Французские ученые П.Ж. Пелетье и Ж. Кавенту (1818) выделили из листьев зеленое вещество и назвали его хлорофиллом (от греч. «хлорос» – зеленый и «филлон» – лист). В настоящее время известно около десяти хлорофиллов. Они отличаются по химическому строению, окраске, распространению среди групп организмов. У всех высших растений содержатся хлорофиллы aиb. Хлоро­филлcобнаружен в диатомовых водорослях, хлорофиллd– в красных водорос­лях. Кроме того, известны бактериохлорофиллы (а,b,c,d), содержащиеся в клетках фотосинтезирующих бактерий. В клетках зеленых бактерий имеются бактериохлорофиллы с иd, в клетках пурпурных бактерий – бактериохлорофиллыaиb. Основными пигментами, без которых фотосинтез не идет, являют­ся хлорофиллaдля зеленых высших растений и водорослей, и бактериохлорофиллы – для бактерий.

Впервые точное представление о пигментах зеленого листа высших растений было получено благодаря работам крупнейшего российского ботаника М.С. Цвета (1872-1919). Он разработал новый хроматографический метод разделения ве­ществ и выделил пигменты листа в чистом виде. Оказалось, что листья высших растений содер­жат хлорофилл aи хлорофиллb, а также каротиноиды (каротин, ксантофилл). Хлорофиллы, так же, как и каротиноиды, нерастворимы в воде, но хоро­шо растворимы в органических растворителях. Хлорофиллыaиbразличаются по цвету: хлорофиллaимеет сине-зеленый оттенок, хлорофиллb– желто-зеленый. Содержание хлорофиллаaв листе примерно в 3 раза больше по срав­нению с хлорофилломb. По химическому строению хлорофиллы – сложные эфиры дикарбоновой ор­ганической кислоты – хлорофиллина и двух остатков спиртов – фитола (С 20 Н 39 ОН) и метилового (СН 3 ОН). Эмпирическая формула хлорофилла С 55 Н 72 О 5 N 4 Мg(рис. 5.1 ).

Органическая дикарбоновая кислота хлорофиллин представ­ляет собой азотсодержащее металлорганическое соединение, относящееся к магнийпорфиринам: (СООН) 2 = С 32 Н 30 ОN 4 Мg.

В хлорофилле водород карбоксильных групп замещен остатками двух спир­тов – метилового СН 3 ОН и фитола С 20 Н 39 ОН, поэтому хлорофилл является слож­ным эфиром.

Рис. 5.1.Структурная формула хлорофилла а.

Хлоро­филл bотличается тем, что содержит на два атома водорода меньше и на один атом кислорода больше (вместо группы СН 3 группа СНО). В связи с этим, молекулярная масса хлорофиллаa– 893 и хлорофиллаb– 907.

В центре молекулы хлорофилла расположен атом магния, который соединен с четырьмя атомами азота пиррольных группировок. В пиррольных группиров­ках хлорофилла имеется система чередующихся двойных и простых связей. Это хромофорная группа хлорофилла, обусловливающая поглощение опреде­ленных лучей солнечного спектра и его окраску.

Еще К.А. Тимирязев обратил внимание на близость хи­мического строения двух важнейших пигментов: зеленого – хлорофилла листьев и красного – гемина крови. Действительно, если хлорофилл относится к магнийпорфиринам, то гемин – к железопорфиринам. Сходство это служит еще одним доказательством единства всего органического мира.

Молекула хлорофилла полярна, ее порфириновое ядро обладает гидрофиль­ными свойствами, а фитольный конец – гидрофобными. Это свойство молеку­лы хлорофилла обусловливает определенное расположение ее в мембранах хлоропластов. Порфириновая часть молекулы связана с белком, а фитольная цепь погружена в липидный слой.

Хлорофилл способен к избирательному поглощению света. Спектр поглощения определяется его способностью погло­щать свет определенной длины волны (определенного цвета). Для того чтобы получить спектр поглощения, К.А. Тимирязев пропускал луч света через рас­твор хлорофилла. Было по­казано, что хлорофилл в той же концентрации, как в листе, имеет две основные линии поглощения в красных и сине-фиолетовых лучах. При этом хло­рофилл aв растворе имеет максимум поглощения 429 и 660 нм, тогда как хло­рофиллb– при 453 и 642 нм(рис. 5.2).

Рис. 5.2.Спектры поглощения хлорофилла а и хлорофиллаb

Наряду с зелеными пигментами в хлоропластах и хроматофорах содержатся пиг­менты, относящиеся к группе каротиноидов. Каротиноиды – это желтые и оран­жевые пигменты алифатического строения, производные изопрена. Кароти­ноиды содержатся во всех высших растениях и у многих микроорганизмов. Это самые распространенные пигменты с разнообразными функциями. Кароти­ноиды, содержащие кислород, получили название ксантофиллы. Основными представителями каротиноидов у высших растений являются два пигмента – бета-каротин (оранжевый) С 40 Н 56 и ксантофилл (желтый) С 40 Н 56 О 2 . Каротин со­стоит из 8 изопреновых остатков. При разрыве углеродной цепочки пополам и образовании на конце спиртовой группы каротин превращается в 2 молекулы витамина А.

Бета-каротин имеет два максимума поглощения, соответствующие длинам волн 482 и 452 нм. В отличие от хлорофиллов каротиноиды не поглощают красные лучи, а также не обладают способностью к флуоресценции. Подобно хлорофиллу каротиноиды в хлоропластах и хроматофорах находятся в виде нерастворимых в воде комплек­сов с белками. Каротиноиды всегда присутствуют в хлоропластах, они принимают участие в процессе фотосинтеза. Поглощая световую энергию в определенных участках солнечного спектра, они пере­дают энергию этих лучей на молекулы хлорофилла. Тем самым, они способствуют использованию лучей, которые хлорофиллом не поглощаются. Физиологическая роль каротиноидов не ограничивается их участием в пе­редаче энергии на молекулы хлорофилла. Каротиноиды выполняют защитную функцию, предо­храняя молекулы хлорофил­ла от разрушения на свету в процессе фотоокисления (рис. 5.3).

Рис. 5.3.Структурная формула бета-каротина

Фикобилины – красные и синие пигменты, содержащиеся у цианобактерий и красных водорослей. В основе химическо­го строения фикобилинов лежат 4 пиррольные группировки. В отличие от хлорофилла у фикобилинов пиррольные группы расположены в виде открытой цепочки (рис. 5.4).

Рис. 5.4.Структурная формула хромофорной группы фикоэритринов

Фикобилины представлены пигментами: фикоцианином, фикоэритрином и аллофикоцианином. Фикоэритрин – это окисленный фикоцианин. Красные водоросли, в основном, содержат фикоэритрин, а цианобактерии – фикоцианин. Фикобилины образуют прочные соединения с белками (фикобилинпротеиды). В отличие от хлорофиллов и каротиноидов, расположенных в мембранах, фикобилины концентрируются в особых гранулах (фикобилисомах), тесно связанных с мембранами тилакоидов. Фикобилины поглощают лучи в зеленой и желтой частях солнечного спек­тра. Это та часть спектра, которая находится между двумя основными линиями поглощения хлорофилла. Фикоэритрин поглощает лучи с длиной волны 495-565 нм, а фикоцианин – 550-615 нм. Сравнение спектров поглощения фи­кобилинов со спектральным составом света, в котором проходит фотосинтез у цианобактерий и красных водорослей, показывает, что они очень близки. Это позволяет считать, что фикобилины поглощают энергию света и, подобно каротиноидам, передают ее на молекулу хлорофилла, после чего она используется в процессе фотосинтеза. Наличие фикобилинов у водорослей является примером приспособления ор­ганизмов в процессе эволюции к использованию участков солнечного спектра, которые проникают сквозь толщу морской воды (хроматическая адаптация).

Фотосинтез – это сложный многоступенчатый окислительно-восстановитель­ный процесс, в котором происходит восстановление углекислого газа до углеводов и окисление воды до кислорода. В процессе фотосинтеза происходят не только реакции, идущие с использова­нием энергии света, но и темновые, не требующие непосредственного участия энергии света. Можно привести следующее доказательство существования темновых реакций в процессе фотосинтеза: фотосинтез ускоряется с повыше­нием температуры. Отсюда прямо следует, что какие-то этапы этого процесса непосредственно не связаны с использованием энергии света. Процесс фотосинтеза включает следующие этапы: 1) фотофизический; 2) фо­тохимический (световой); 3) ферментативный (темновой).

Согласно законам фотохимии, при поглощении кванта света атомом или мо­лекулой какого-либо вещества электрон переходит на другую, более удаленную орбиталь, то есть на более высокий энергетический уровень (рис. 5.5).

Рис. 5.5.Переходы между возбужденными состояниями хлорофилла после поглощения квантов синего и красного света

Наибольшей энергией обладает электрон, отдаленный от ядра атома и находящийся на достаточно большом расстоянии от него. Каждый электрон переходит на более высокий энер­гетический уровень под влиянием одного кванта света, если энергия этого кванта равна разнице между этими энергетическими уровнями. Все фотосинтезирующие организмы содержат какой-либо тип хлорофилла. В молекуле хлорофилла два уровня возбуждения. Именно с этим связано и то, что он имеет две основные линии поглощения. Первый уровень возбуждения обусловлен переходом на более высокий энергетический уровень электрона в системе сопряженных двойных связей, а второй – с возбуждением неспарен­ных электронов атомов азота и кислорода в порфириновом ядре. При поглоще­нии света электроны переходят в колебательное движение и перемещаются на следую­щие орбитали с более высоким энергетическим уровнем.

Наиболее высокий энергетический уровень – это второй синглетный уро­вень. Электрон переходит на него под влиянием сине-фиолетовых лучей, кванты которых содержат больше энергии.

В первое возбужденное состояние электроны могут переходить, поглощая более мелкие кванты красного света. Время жизни на втором уровне составляет 10 -12 с. Это время настолько мало, что на его протяжении энергия электронного возбуждения не может быть использо­вана. Через этот короткий промежуток времени электрон возвращается в первое синглетное состояние (без изменения направления спина). Переход из вто­рого синглетного состояния в первое сопровождается некоторой потерей энергии (100 кДж) в виде теплоты. Время жизни в первом синглетном состоянии немного больше (10 -9 или 10 -8 с). Наибольшим временем жизни (10 -2 с) обладает триплетное состояние. Переход на триплетный уровень происхо­дит с изменением спина электрона.

Из возбужденного, первого синглетного и триплетного состояния молекула хлорофилла также может переходить в основное. При этом ее дезактивация (потеря энергии) может проходить:

1) путем выделения энергии в виде света (флуоресценция и фосфоресценция) или в виде тепла;

2) путем переноса энергии на другую молекулу пигмента;

3) путем затрачивания энергии на фотохимические процессы (потеря электрона и присоединение его к акцептору).

В любом из указанных случаев молекула пигмента дезактивируется и переходит на основной энергетический уровень.

Хлорофилл имеет две функции – поглоще­ние и передачу энергии. При этом основная часть молекул хлорофилла – более 90% всего хлорофилла хлоропластов входит в состав светособирающего комплек­са (ССК). Светособирающий комплекс выполняет роль антенны, которая эф­фективно поглощает свет и переносит энергию возбуждения к реакционному центру. Кроме большого числа (до нескольких сотен) молекул хлорофилла ССК содержит каротиноиды, а у некоторых водорослей и цианобактерий – фикобилины, которые увеличивают эффективность усвоения света.

В процес­се эволюции в растениях выработался механизм, позволяющий наиболее полно использовать кванты света, падающие на лист подобно каплям дождя. Механизм этот заключается в том, что энергия квантов света улавливается 200-400 моле­кулами хлорофилла и каротиноидами ССК и передается одной молекуле – реакционному центру. Расчеты показали, что в одном хло­ропласте до 1 млрд молекул хлорофилла. Теневыносливые рас­тения имеют, как правило, больший размер ССК по сравнению с растениями, растущими в условиях высокой освещенности. В реакционных центрах в результате фотохимических реакций образуются первичные восстановитель и окислитель. Они затем вызывают цепь последовательных окислительно-восста­новительных реакций. В итоге энергия запасается в виде восстановленного никотинамидаденин­динуклеотидфосфата (НАДФ Н+) и аденозинтри­фосфата (АТФ), который синтезируется из аденозиндифосфата (АДФ) и неорганической фосфорной кислоты за счет реакции фо­тосинтетического фосфорилирования. Следовательно, НАДФ Н+ и АТФ – основные продукты световой фазы фото­синтеза. Таким образом, в первичных процессах фотосинтеза, связанных с поглоще­нием молекулой хлорофилла кванта света, важную роль играют процессы пере­дачи энергии. Фотофизический этап фотосинтеза заключается в том, что кванты света поглощаются и переводят молекулы пигментов в возбужденное состояние. Затем эта энергия переносится на реакционный центр, осуществ­ляющий первичные фотохимические реакции: разделение зарядов. Дальнейшее превращение энергии света в химическую энергию проходит ряд этапов, начиная с окислительно-восстановительных превращений хлорофилла и включая как фотохимические (световые), так и энзиматические (темновые) реакции.

То есть фотосинтез включает преобра­зование энергии (явление, получившее на­звание светового процесса) и превращение вещества (темновой процесс). Световой процесс происходит в тилакоидах, темновой – в строме хлоропластов. Два процесса фотосинтеза выражаются отдельными уравнениями:

12Н 2 О =12Н 2 + 6О 2 + энергия АТФ (световой процесс).

Из этого уравнения видно, что кислород, выделяемый при фотосинтезе, образуется при разложении молекул воды. Кроме того, световая энергия используется на синтез аденозинтрифосфорной кислоты (АТФ) в ходе фотофосфорилирования.

6СО 2 + 12Н 2 + энергия АТФ = С 6 Н 12 О 6 + Н 2 О (темновой процесс)

В темновых реакциях используются продукты, накопленные в световой фазе. Суть темновых реакций сводится к фик­сации СО 2 и включению его в молекулу сахара. Этот процесс получил название цикла Кальвина по имени американского биохимика, подробно изучившего после­довательность темновых реакций. Использование воды в качестве источника водорода для синтеза органических молекул дало растениям в процессе эволюции большое преимущество в силу повсеместного ее присутствия (вода является самым распространенным минералом на Земле).

Поскольку весь кислород фотосинтеза выделяется из воды, итоговое уравнение принимает вид:

6СО 2 + 12Н 2 О +hv= С 6 Н 12 О 6 + 6О 2 + 6Н 2 О

Вода в правой части уравнения не подлежит сокращению, так как ее кислород имеет иное происхождение (из СО 2). Следовательно, фотосинтез – это окислительно-восстановительный процесс, в котором вода окисляется до молекуляргого кислорода (О 2) , а углекислый газ восстанавливается водородом воды до углеводов.

По завершении каждого цикла образуется конечный продукт: одна молекула сахара, который ложится в основу первичного органического вещества, образующегося при фотосинтезе.