Координаты середины отрезка в пространстве. Координаты середины отрезка. Полные уроки — Гипермаркет знаний

Введение декартовых координат в пространстве. Расстояние между точками. Координаты середины отрезка.

Цели урока:

Образовательные: Рассмотреть понятие системы координат и координаты точки в пространстве; вывести формулу расстояния в координатах; вывести формулу координат середины отрезка.

Развивающие: Способствовать развитию пространственного воображения учащихся; способствовать выработке решения задач и развития логического мышления учащихся.

Воспитательные: Воспитание познавательной активности, чувства ответственности, культуры общения, культуры диалога.

Оборудование: Чертежные принадлежности, презентация, ЦОР

Тип урока: Урок изучения нового материала

Структура урока:

    Организационный момент.

    Актуализация опорных знаний.

    Изучение нового материала.

    Актуализация новых знаний

    Итог урока.

Ход урока

    Сообщение из истории « Декартовая система координат» (Обучающийся)

Решая геометрическую, физическую, химическую задачу можно использовать различные координатные системы: прямоугольную, полярную, цилиндрическую, сферическую.

В общеобразовательном курсе изучается прямоугольная система координат на плоскости и в пространстве. Иначе её называют Декартовой системой координат по имени французского ученого философа Рене Декарта (1596 – 1650) впервые введшего координаты в геометрию.

(Рассказ ученика об Рене Декарте.)

Рене Декарт родился в 1596 г. в городе Лаэ на юге Франции, в дворянской семье. Отец хотел сделать из Рене офицера. Для этого в 1613 г. он отправил Рене в Париж. Много лет пришлось Декарту пробыть в армии, участвовать в военных походах в Голландии, Германии, Венгрии, Чехии, Италии, в осаде крепости гугенотов Ла-Рошали. Но Рене интересовала философия, физика и математика. Вскоре по приезде в Париж он познакомился с учеником Виета, видным математиком того времени - Мерсеном, а затем и с другими математиками Франции. Будучи в армии, Декарт все свое свободное время отдавал занятиям математикой. Он изучил алгебру немецких, математику французских и греческих ученых.

После взятия Ла-Рошали в 1628 г. Декарт уходит из армии. Он ведет уединенный образ жизни с тем, чтобы реализовать намеченные обширные планы научных работ.

Декарт был крупнейшим философом и математиком своего времени. Самым известным трудом Декарта является его “Геометрия”. Декарт ввел систему координат, которой пользуются все и в настоящее время. Он установил соответствие между числами и отрезками прямой и таким образом ввел алгебраический метод в геометрию. Эти открытия Декарта дали огромный толчок развитию как геометрии, так и другим разделам математики, оптики. Появилась возможность изображать зависимость величин графически на координатной плоскости, числа - отрезками и выполнять арифметические действия над отрезками и другими геометрическими величинами, а также различными функциями. Это был совершенно новый метод, отличавшийся красотой, изяществом и простотой.

    Повторение. Прямоугольная система координат на плоскости.

Вопросы:

    Что называют системой координат на плоскости?

    Как определяются координаты точки на плоскости?

    Назовите координаты начала координат?

    Назовите формулу координат середины отрезка и расстояния между точками на плоскости?

    Изучение нового материала:

Прямоугольной системой координат в пространстве называется тройка взаимно перпендикулярных координатных прямых с общим началом координат. Общее начало координат обозначается буквой O .

Ох – ось абсцисс,

Оу – ось ординат,

О z – ось аппликат

Три плоскости, проходящие через оси координат Ох и Оу, Оу и О z , О z и Ох, называются координатными плоскостями: Оху, Оу z , О z х.

В прямоугольной системе координат каждой точке М пространства сопоставляется тройка чисел – её координаты.

М (х,у, z ), где х – абсцисса, у – ордината, z - аппликата.

Система координат в пространстве

Коордиаты точки

Расстояние между точками

1 (x 1 ;y 1 ;z 1 ) и A 2 (x 2 ;y 2 ;z 2 )

Тогда расстояние между точками A 1 и A 2 вычисляется так:

Координаты середины отрезка в пространстве

Есть две произвольные точки A 1 (x 1 ;y 1 ;z 1 ) и A 2 (x 2 ;y 2 ;z 2 ). Тогда серединой отрезка A 1 A 2 будет точка С с координатами x, y, z, где

    Получение навыков решения:

1) Найдите координаты ортогональных проекций точек A (1, 3, 4) и

B (5, -6, 2) на:

а) плоскость Oxy ; б) плоскость Oyz ; в) ось Ox ; г) ось Oz .

Ответ: а) (1, 3, 0), (5, -6, 0); б) (0, 3, 4), (0, -6, 2); в) (1, 0, 0), (5, 0, 0);

г) (0, 0, 4), (0, 0, 2).

2) На каком расстоянии находится точка A (1, -2, 3) от координатной плоскости:

а) Oxy ; б) Oxz ; в) Oyz ?

Ответ: а) 3; б) 2; в) 1

3)Найдите координаты середины отрезка:

а) AB , если A (1, 2, 3) и B (-1, 0, 1); б) CD , если C (3, 3, 0) и D (3, -1, 2).

Ответ: а) (1, 1, 2); б) (3, 1, 1).

5. Домашнее задание: учебник А.В.Погорелова «Геометрия 10-11» п. 23 – 25, стр.53 ответить на вопросы № 1 – 3; №7, №10(1)

6.Итог урока.

Таблица

На плоскости

В пространстве

Определение. Системой координат называется совокупность двух пересекающихся координатных осей, точки, в которой эти оси пересекаются, – начала координат – и единичных отрезков на каждой из осей

Определение. Системой координат называется совокупность трех координатных осей, точки, в которой эти оси пересекаются, – начала координат – и единичных отрезков на каждой из осей

2 оси,

ОУ- ось ординат,

ОХ- ось абсцисс

3 оси,

ОХ - ось абсцисс,

ОУ – ось ординат,

ОZ - ось аппликат.

ОХ перпендикулярна ОУ

ОХ перпендикулярна ОУ,

ОХ перпендикулярна ОZ ,

ОУ перпендикулярна ОZ

(О;О)

(О;О;О)

Направление, единичный отрезок

Расстояние между точками.

Расстояние между точками

Координаты середины отрезка.

Координаты середины отрезка

Вопросы:

    Как вводится, декартова система координат? Из чего она состоит?

    Как определяются координаты точки в пространстве?

    Чему равна координата точки пересечения координатных осей?

    Чему равно расстояние от начала координат до заданной точки?

    Назовите формулу координат середины отрезка и расстояния между точками в пространстве?

Оценивание обучающихся

7.Рефлексия

На уроке

Я узнал …

Я научился…

Мне понравилось…

Я затруднялся…

Моё настроение…

Литература.

    А.В. Погорелов. Учебник 10-11. М. “Просвещение”, 2010г.

    И.С. Петраков. Математические кружки в 8-10 классах. М, “Просвещение”, 1987 г.

Очень часто в задаче C2 требуется работать с точками, которые делят отрезок пополам. Координаты таких точек легко считаются, если известны координаты концов отрезка.

Итак, пусть отрезок задан своими концами - точками A = (x a ; y a ; z a) и B = (x b ; y b ; z b). Тогда координаты середины отрезка - обозначим ее точкой H - можно найти по формуле:

Другими словами, координаты середины отрезка - это среднее арифметическое координат его концов.

· Задача . Единичный куб ABCDA 1 B 1 C 1 D 1 помещен в систему координат так, что оси x, y и z направлены вдоль ребер AB, AD и AA 1 соответственно, а начало координат совпадает с точкой A. Точка K - середина ребра A 1 B 1 . Найдите координаты этой точки.

Решение . Поскольку точка K - середина отрезка A 1 B 1 , ее координаты равных среднему арифметическому координат концов. Запишем координаты концов: A 1 = (0; 0; 1) и B 1 = (1; 0; 1). Теперь найдем координаты точки K:

Ответ : K = (0,5; 0; 1)

· Задача . Единичный куб ABCDA 1 B 1 C 1 D 1 помещен в систему координат так, что оси x, y и z направлены вдоль ребер AB, AD и AA 1 соответственно, а начало координат совпадает с точкой A. Найдите координаты точки L, в которой пересекаются диагонали квадрата A 1 B 1 C 1 D 1 .

Решение . Из курса планиметрии известно, что точка пересечения диагоналей квадрата равноудалена от всех его вершин. В частности, A 1 L = C 1 L, т.е. точка L - это середина отрезка A 1 C 1 . Но A 1 = (0; 0; 1), C 1 = (1; 1; 1), поэтому имеем:

Ответ : L = (0,5; 0,5; 1)

Простейшие задачи аналитической геометрии.
Действия с векторами в координатах

Задания, которые будут рассмотрены, крайне желательно научиться решать на полном автомате, а формулы запомнить наизусть , даже специально не запоминать, сами запомнятся =) Это весьма важно, поскольку на простейших элементарных примерах базируются другие задачи аналитической геометрии, и будет досадно тратить дополнительное время на поедание пешек. Не нужно застёгивать верхние пуговицы на рубашке, многие вещи знакомы вам со школы.

Изложение материала пойдет параллельным курсом – и для плоскости, и для пространства. По той причине, что все формулы… сами увидите.

В статье ниже будут освещены вопросы нахождения координат середины отрезка при наличии в качестве исходных данных координат его крайних точек. Но, прежде чем приступить к изучению вопроса, введем ряд определений.

Yandex.RTB R-A-339285-1 Определение 1

Отрезок – прямая линия, соединяющая две произвольные точки, называемые концами отрезка. В качестве примера пусть это будут точки A и B и соответственно отрезок A B .

Если отрезок A B продолжить в обе стороны от точек A и B , мы получим прямую A B . Тогда отрезок A B – часть полученной прямой, ограниченный точками A и B . Отрезок A B объединяет точки A и B , являющиеся его концами, а также множество точек, лежащих между. Если, к примеру, взять любую произвольную точку K , лежащую между точками A и B , можно сказать, что точка K лежит на отрезке A B .

Определение 2

Длина отрезка – расстояние между концами отрезка при заданном масштабе (отрезке единичной длины). Длину отрезка A B обозначим следующим образом: A B .

Определение 3

Середина отрезка – точка, лежащая на отрезке и равноудаленная от его концов. Если середину отрезка A B обозначить точкой C , то верным будет равенство: A C = C B

Исходные данные: координатная прямая O x и несовпадающие точки на ней: A и B . Этим точкам соответствуют действительные числа x A и x B . Точка C – середина отрезка A B: необходимо определить координату x C .

Поскольку точка C является серединой отрезка А В, верным будет являться равенство: | А С | = | С В | . Расстояние между точками определяется модулем разницы их координат, т.е.

| А С | = | С В | ⇔ x C - x A = x B - x C

Тогда возможно два равенства: x C - x A = x B - x C и x C - x A = - (x B - x C)

Из первого равенства выведем формулу для координаты точки C: x C = x A + x B 2 (полусумма координат концов отрезка).

Из второго равенста получим: x A = x B , что невозможно, т.к. в исходных данных - несовпадающие точки. Таким образом, формула для определения координат середины отрезка A B с концами A (x A) и B (x B):

Полученная формула будет основой для определения координат середины отрезка на плоскости или в пространстве.

Исходные данные: прямоугольная система координат на плоскости О x y , две произвольные несовпадающие точки с заданными координатами A x A , y A и B x B , y B . Точка C – середина отрезка A B . Необходимо определить координаты x C и y C для точки C .

Возьмем для анализа случай, когда точки A и B не совпадают и не лежат на одной координатной прямой или прямой, перпендикулярной одной из осей. A x , A y ; B x , B y и C x , C y - проекции точек A , B и C на оси координат (прямые О х и О y).

Согласно построению прямые A A x , B B x , C C x параллельны; прямые также параллельны между собой. Совокупно с этим по теореме Фалеса из равенства А С = С В следуют равенства: А x С x = С x В x и А y С y = С y В y , и они в свою очередь свидетельствуют о том, что точка С x – середина отрезка А x В x , а С y – середина отрезка А y В y . И тогда, опираясь на полученную ранее формулу, получим:

x C = x A + x B 2 и y C = y A + y B 2

Этими же формулами можно воспользоваться в случае, когда точки A и B лежат на одной координатной прямой или прямой, перпендикулярной одной из осей. Проводить детальный анализ этого случая не будем, рассмотрим его лишь графически:

Резюмируя все выше сказанное, координаты середины отрезка A B на плоскости с координатами концов A (x A , y A) и B (x B , y B) определяются как :

(x A + x B 2 , y A + y B 2)

Исходные данные: система координат О x y z и две произвольные точки с заданными координатами A (x A , y A , z A) и B (x B , y B , z B) . Необходимо определить координаты точки C , являющейся серединой отрезка A B .

A x , A y , A z ; B x , B y , B z и C x , C y , C z - проекции всех заданных точек на оси системы координат.

Согласно теореме Фалеса верны равенства: A x C x = C x B x , A y C y = C y B y , A z C z = C z B z

Следовательно, точки C x , C y , C z являются серединами отрезков A x B x , A y B y , A z B z соответственно. Тогда, для определения координат середины отрезка в пространстве верны формулы:

x C = x A + x B 2 , y c = y A + y B 2 , z c = z A + Z B 2

Полученные формулы применимы также в случаях, когда точки A и B лежат на одной из координатных прямых; на прямой, перпендикулярной одной из осей; в одной координатной плоскости или плоскости, перпендикулярной одной из координатных плоскостей.

Определение координат середины отрезка через координаты радиус-векторов его концов

Формулу для нахождения координат середины отрезка также можно вывести согласно алгебраическому толкованию векторов.

Исходные данные: прямоугольная декартова система координат O x y , точки с заданными координатами A (x A , y A) и B (x B , x B) . Точка C – середина отрезка A B .

Согласно геометрическому определению действий над векторами верным будет равенство: O C → = 1 2 · O A → + O B → . Точка C в данном случае – точка пересечения диагоналей параллелограмма, построенного на основе векторов O A → и O B → , т.е. точка середины диагоналей.Координаты радиус-вектора точки равны координатам точки, тогда верны равенства: O A → = (x A , y A) , O B → = (x B , y B) . Выполним некоторые операции над векторами в координатах и получим:

O C → = 1 2 · O A → + O B → = x A + x B 2 , y A + y B 2

Следовательно, точка C имеет координаты:

x A + x B 2 , y A + y B 2

По аналогии определяется формула для нахождения координат середины отрезка в пространстве:

C (x A + x B 2 , y A + y B 2 , z A + z B 2)

Примеры решения задач на нахождение координат середины отрезка

Среди задач, предполагающих использование полученных выше формул, встречаются, как и те, в которых напрямую стоит вопрос рассчитать координаты середины отрезка, так и такие, что предполагают приведение заданных условий к этому вопросу: зачастую используется термин «медиана», ставится целью нахождение координат одного из концов отрезка, а также распространены задачи на симметрию, решение которых в общем также не должно вызывать затруднений после изучения настоящей темы. Рассмотрим характерные примеры.

Пример 1

Исходные данные: на плоскости – точки с заданными координатами А (- 7 , 3) и В (2 , 4) . Необходимо найти координаты середины отрезка А В.

Решение

Обозначим середину отрезка A B точкой C . Координаты ее буду определяться как полусумма координат концов отрезка, т.е. точек A и B .

x C = x A + x B 2 = - 7 + 2 2 = - 5 2 y C = y A + y B 2 = 3 + 4 2 = 7 2

Ответ : координаты середины отрезка А В - 5 2 , 7 2 .

Пример 2

Исходные данные: известны координаты треугольника А В С: А (- 1 , 0) , В (3 , 2) , С (9 , - 8) . Необходимо найти длину медианы А М.

Решение

  1. По условию задачи A M – медиана, а значит M является точкой середины отрезка B C . В первую очередь найдем координаты середины отрезка B C , т.е. точки M:

x M = x B + x C 2 = 3 + 9 2 = 6 y M = y B + y C 2 = 2 + (- 8) 2 = - 3

  1. Поскольку теперь нам известны координаты обоих концов медианы (точки A и М), можем воспользоваться формулой для определения расстояния между точками и посчитать длину медианы А М:

A M = (6 - (- 1)) 2 + (- 3 - 0) 2 = 58

Ответ: 58

Пример 3

Исходные данные: в прямоугольной системе координат трехмерного пространства задан параллелепипед A B C D A 1 B 1 C 1 D 1 . Заданы координаты точки C 1 (1 , 1 , 0) , а также определена точка M , являющаяся серединой диагонали B D 1 и имеющая координаты M (4 , 2 , - 4) . Необходимо рассчитать координаты точки А.

Решение

Диагонали параллелепипеда имеют пересечение в одной точке, которая при этом является серединой всех диагоналей. Исходя из этого утверждения, можно иметь в виду, что известная по условиям задачи точка М является серединой отрезка А С 1 . Опираясь на формулу для нахождения координат середины отрезка в пространстве, найдем координаты точки А: x M = x A + x C 1 2 ⇒ x A = 2 · x M - x C 1 = 2 · 4 - 1 + 7 y M = y A + y C 1 2 ⇒ y A = 2 · y M - y C 1 = 2 · 2 - 1 = 3 z M = z A + z C 1 2 ⇒ z A = 2 · z M - z C 1 = 2 · (- 4) - 0 = - 8

Ответ: координаты точки А (7 , 3 , - 8) .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Пусть А(Х 1 ; у 1) и В(х 2 ; у 2) — две произвольные точки и С (х; у) — середина отрезка АВ. Найдем координаты х, у точки С.

Рассмотрим сначала случай, когда отрезок АВ не параллелен оси у, т. е. Х 1 Х 2 . Проведем через точки А, В, С прямые, параллельные оси у (рис. 173). Они пересекут ось х в точках A 1 (X 1 ; 0), B 1 (X 2 ; 0), C 1 (х; 0). По теореме Фалеса точка С 1 будет серединой отрезка A 1 B 1 .

Так как точка С 1 —середина отрезка AiBi, то A 1 C 1 =B 1 C 1 , а значит, Ix — X 1 I = Iх — Х 2 I. Отсюда следует, что либо x —x 1 = x — x 2 , либо (x — x 1) = —(x-x 2).
Первое равенство невозможно, так как x 1 x 2 . Поэтому верно второе. А из него получается формула

Если x 1 =x 2 , т. е. отрезок АВ параллелен оси у, то все три точки A 1 , B 1 , C 1 имеют одну и ту же абсциссу. Значит, формула остается верной и в этом случае.
Ордината точки С находится аналогично. Через точки А, В, С проводятся прямые, параллельные оси х. Получается формула

Задача (15). Даны три вершины параллелограмма ABCD: А (1; 0), В (2; 3), С (3; 2). Найдите координаты четвертой вершины D и точки пересечения диагоналей.

Решение. Точка пересечения диагоналей является серединой каждой из них. Поэтому она является серединой отрезка АС, a значит, имеет координаты

Теперь, зная координаты точки пересечения диагоналей, находим координаты х, у четвертой вершины D. Пользуясь тем, что точка пересечения диагоналей является серединой отрезка BD, имеем:

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений