Определение теплопроводности твердых материалов методом плоского слоя. Особенности определения теплопроводности строительных материалов Измерение теплопроводности

Какими бы ни были масштабы строительства, первым делом разрабатывается проект. В чертежах отражается не только геометрия строения, но и расчет главных теплотехнических характеристик. Для этого надо знать теплопроводность строительных материалов. Главная цель строительства заключается в сооружении долговечных сооружений, прочных конструкций, в которых комфортно без избыточных затрат на отопление. В связи с этим крайне важно знание коэффициентов теплопроводности материалов.

У кирпича лучшая теплопроводность

Характеристика показателя

Под термином теплопроводность понимается передача тепловой энергии от более нагретых предметов к менее нагретым. Обмен идет, пока не наступит температурного равновесия.

Теплопередача определяется отрезком времени, в течение которого температура в помещениях находится в соответствии с температурой окружающей среды. Чем меньше этот интервал, тем больше проводимость тепла стройматериала.

Для характеристики проводимости тепла используется понятие коэффициента теплопроводности, показывающего, сколько тепла за такое-то время проходит через такую-то площадь поверхности. Чем этот показатель выше, тем больше теплообмен, и постройка остывает гораздо быстрее. Таким образом, при возведении сооружений рекомендуется использовать стройматериалы с минимальной проводимостью тепла.

В этом видео вы узнаете о теплопроводности строительных материалов:

Как определить теплопотери

Главные элементы здания, через которые уходит тепло:

  • двери (5-20%);
  • пол (10-20%);
  • крыша (15-25%);
  • стены (15-35%);
  • окна (5-15%).

Уровень теплопотери определяется с помощью тепловизора. О самых трудных участках говорит красный цвет, о меньших потерях тепла скажет желтый и зеленый. Зоны, где потери наименьшие, выделяются синим. Значение теплопроводности определяется в лабораторных условиях, и материалу выдается сертификат качества.

Значение проводимости тепла зависит от таких параметров:

  1. Пористость. Поры говорят о неоднородности структуры. Когда через них проходит тепло, охлаждение будет минимальным.
  2. Влажность. Высокий уровень влажности провоцирует вытеснение сухого воздуха капельками жидкости из пор, из-за чего значение увеличивается многократно.
  3. Плотность. Большая плотность способствует более активному взаимодействию частиц. В итоге теплообмен и уравновешивание температур протекает быстрее.

Коэффициент теплопроводности

В доме теплопотери неизбежны, а происходят они, когда за окном температура ниже, чем в помещениях. Интенсивность является переменной величиной и зависит от многих факторов, основные из которых следующие:

  1. Площадь поверхностей, участвующих в теплообмене.
  2. Показатель теплопроводности стройматериалов и элементов здания.
  3. Разница температур.

Для обозначения коэффициента теплопроводности стройматериалов используют греческую букву λ. Единица измерения – Вт/(м×°C). Расчет производится на 1 м² стены метровой толщины. Здесь принимается разница температур в 1°C.

Пример из практики

Условно материалы делятся на теплоизоляционные и конструкционные. Последние имеют наивысшую теплопроводность, из них строят стены, перекрытия, другие ограждения. По таблице материалов, при постройке стен из железобетона для обеспечения малого теплообмена с окружающей средой толщина их должна составлять примерно 6 м. Но тогда строение будет громоздким и дорогостоящим .

В случае неправильного расчета теплопроводности при проектировании жильцы будущего дома будут довольствоваться лишь 10% тепла от энергоносителей. Потому дома из стандартных стройматериалов рекомендуется утеплять дополнительно.

При выполнении правильной гидроизоляции утеплителя большая влажность не влияет на качество теплоизоляции, и сопротивление строения теплообмену станет гораздо более высоким.


Наиболее оптимальный вариант – использовать утеплитель

Наиболее распространенный вариант – сочетание несущей конструкции из высокопрочных материалов с дополнительной теплоизоляцией. Например:

  1. Каркасный дом. Утеплитель укладывается между стойками. Иногда при небольшом снижении теплообмена требуется дополнительное утепление снаружи главного каркаса.
  2. Сооружение из стандартных материалов. Когда стены кирпичные или шлакоблочные, утепление производится снаружи.

Стройматериалы для наружных стен

Стены сегодня возводятся из разных материалов, однако популярнейшими остаются: дерево, кирпич и строительные блоки. Главным образом отличаются плотность и проводимость тепла стройматериалов. Сравнительный анализ позволяет найти золотую середину в соотношении между этими параметрами. Чем плотность больше, тем больше несущая способность материала, а значит, всего сооружения. Но тепловое сопротивление становится меньше, то есть повышаются расходы на энергоносители. Обычно при меньшей плотности есть пористость.

Коэффициент теплопроводности и его плотность.

Утеплители для стен

Утеплители используются, когда не хватает тепловой сопротивляемости наружных стен. Обычно для создания комфортного микроклимата в помещениях достаточно толщины 5-10 см.

Значение коэффициента λ приводится в следующей таблице.

Теплопроводность измеряет способность материала пропускать тепло через себя. Она сильно зависит от состава и структуры. Плотные материалы, такие как металлы и камень, являются хорошими проводниками тепла, в то время как вещества с низкой плотностью, такие как газ и пористая изоляция, являются плохими проводниками.

ГОСТ 7076-99

УДК 691:536.2.08:006.354 Группа Ж19

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

МАТЕРИАЛЫ И ИЗДЕЛИЯ СТРОИТЕЛЬНЫЕ

Метод определения теплопроводности и термического сопротивления

при стационарном тепловом режиме

BUILDING MATERIALS AND PRODUCTS

Method of determination of steady-state thermal

conductivity and thermal resistance

Дата введения 2000-04-01

Предисловие

1 РАЗРАБОТАН Научно-исследовательским институтом строительной физики (НИИСФ) Российской Федерации

ВНЕСЕН Госстроем России

2 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и сертификации в строительстве (МНТКС) 20 мая 1999 г.

Наименование государства

Наименование органа государственного

управления строительством

Республика Армения

Министерство градостроительства Республики Армения

Республика Казахстан

Комитет по делам строительства Министерства энергетики, индустрии и торговли Республики Казахстан

Кыргызская Республика

Государственная инспекция по архитектуре и строительству при Правительстве Кыргызской Республики

Республика Молдова

Министерство развития территорий, строительства и коммунального хозяйства Республики Молдова

Российская Федерация

Госстрой России

Республика Таджикистан

Комитет по делам архитектуры и строительства Республики Таджикистан

Республика Узбекистан

Государственный Комитет по архитектуре и строительству Республики Узбекистан

Государственный Комитет строительства, архитектуры и жилищной политики Украины

3 ВЗАМЕН ГОСТ 7076-87

4 ВВЕДЕН В ДЕЙСТВИЕ с 1 апреля 2000 г. в качестве государственного стандарта Российской Федерации постановлением Госстроя России от 24 декабря 1999 г. № 89

Введение

Настоящий стандарт гармонизирован со стандартами ИСО 7345:1987 и ИСО 9251:1987 в части терминологии и соответствует основным положениям ИСО 8301:1991 , ИСО 8302:1991 , устанавливающих методы определения термического сопротивления и эффективной теплопроводности с помощью прибора, оснащенного тепломером, и прибора с горячей охранной зоной.

В соответствии со стандартами ИСО в настоящем стандарте установлены требования к образцам, прибору и его градуировке, приняты две основные схемы испытания: асимметричная (с одним тепломером) и симметричная (с двумя тепломерами).

1 Область применения

Настоящий стандарт распространяется на строительные материалы и изделия, а также на материалы и изделия, предназначенные для тепловой изоляции промышленного оборудования и трубопроводов, и устанавливает метод определения их эффективной теплопроводности и термического сопротивления при средней температуре образца от минус 40 до + 200 °С.

Стандарт не распространяется на материалы и изделия с теплопроводностью более 1,5 Вт/(м× К).

ГОСТ 166-89 Штангенциркули. Технические условия

ГОСТ 427-75 Линейки измерительные металлические. Технические условия

ГОСТ 24104-88 Весы лабораторные общего назначения и образцовые. Общие технические условия

3 Определения и обозначения

3.1 В настоящем стандарте применяют следующие термины с соответствующими определениями.

Тепловой поток - количество теплоты, проходящее через образец в единицу времени.

Плотность теплового потока - тепловой поток, проходящий через единицу площади.

Стационарный тепловой режим - режим, при котором все рассматриваемые теплофизические параметры не меняются со временем.

Термическое сопротивление образца - отношение разности температур лицевых граней образца к плотности теплового потока в условиях стационарного теплового режима.

Средняя температура образца - среднеарифметическое значение температур, измеренных на лицевых гранях образца.

Эффективная теплопроводность l eff материала (соответствует термину «коэффициент теплопроводности», принятому в действующих нормах по строительной теплотехнике) - отношение толщины испытываемого образца материала d к его термическому сопротивлению R.

3.2 Обозначения величин и единицы измерения приведены в таблице 1.

Таблица 1

Обозначение

Величина

Единица измерения

l eff

Эффективная теплопроводность

Вт/(м× К)

Термическое сопротивление

м 2 × К/Вт

Толщина образца до испытания

Термические сопротивления стандартных образцов

м 2 × К/Вт

D T 1 , D Т 2

Разность температур лицевых граней стандартных образцов

e 1 , e 2

Выходные сигналы тепломера прибора при его градуировке при помощи стандартных образцов

f 1 , f 2

Градуировочные коэффициенты тепломера прибора при его градуировке при помощи стандартных образцов

Вт/(мВ× м 2)

Толщина образца в процессе испытания

Термическое сопротивление испытываемого образца

м 2 × К/Вт

Относительное изменение массы образца после сушки

Относительное изменение массы образца в процессе испытания

Масса образца при его получении от изготовителя

Масса образца после сушки

Масса образца после испытания

D T u

Разность температур лицевых граней испытываемого образца

Средняя температура испытываемого образца

Температура горячей лицевой грани испытываемого образца

Температура холодной лицевой грани испытываемого образца

Значение градуировочного коэффициента тепломера прибора, соответствующее значению теплового потока, протекающего через испытываемый образец после установления стационарного теплового режима (при асимметричной схеме испытания)

Вт/(мВ× м 2)

Выходной сигнал тепломера прибора после установления стационарного теплового потока через испытываемый образец (при асимметричной схеме испытания)

Термическое сопротивление между лицевой гранью образца и рабочей поверхностью плиты прибора

l effu

Эффективная теплопроводность материала испытываемого образца

Вт/(м× К)

Термическое сопротивление листового материала, из которого изготовлены дно и крышка ящика для образца насыпного материала

м 2 × К/Вт

f¢ u , f ² u

Значения градуировочного коэффициента первого и второго тепломеров прибора, соответствующие значению теплового потока, протекающего через испытываемый образец после установления стационарного теплового режима (при симметричной схеме испытания)

Вт/(мВ× м 2)

e¢ u , e ² u

Выходной сигнал первого и второго тепломеров после установления стационарного теплового потока через испытываемый образец (при симметричной схеме испытания)

Плотность стационарного теплового потока, проходящего через испытываемый образец

Площадь зоны измерения

Электрическая мощность, подаваемая на нагреватель зоны измерения горячей плиты прибора

4 Общие положения

4.1 Сущность метода заключается в создании стационарного теплового потока, проходящего через плоский образец определенной толщины и направленного перпендикулярно к лицевым (наибольшим) граням образца, измерении плотности этого теплового потока, температуры противоположных лицевых граней и толщины образца.

4.2 Число образцов, необходимое для определения эффективной теплопроводности или термического сопротивления, и порядок отбора образцов должны быть указаны в стандарте на конкретный материал или изделие. Если в стандарте на конкретный материал или изделие не указано число образцов, подлежащих испытанию, эффективную теплопроводность или термическое сопротивление определяют на пяти образцах.

4.3 Температура и относительная влажность воздуха помещения, в котором проводят испытания, должны быть соответственно (295 ± 5) К и (50 ± 10) %.

5 Средства измерения

Для проведения испытания применяют:

прибор для измерения эффективной теплопроводности и термического сопротивления, аттестованный в установленном порядке и удовлетворяющий требованиям, приведенным в приложении А;

прибор для определения плотности волокнистых материалов по ГОСТ 17177;

прибор для определения толщины плоских волокнистых изделий по ГОСТ 17177;

электрошкаф сушильный, верхний предел нагрева которого не менее 383 К, предел допустимой погрешности задания и автоматического регулирования температуры - 5 К;

штангенциркуль по ГОСТ 166:

Для измерения наружных и внутренних размеров с диапазоном измерения 0-125 мм, значением отсчета по нониусу - 0,05 мм, пределом допускаемой погрешности - 0,05 мм;

Для измерения наружных размеров с диапазоном измерения 0-500 мм, значением отсчета по нониусу - 0,1 мм, пределом допускаемой погрешности -0,1 мм;

линейка металлическая измерительная по ГОСТ 427 с верхним пределом измерения 1000 мм, пределом допускаемого отклонения от номинальных значений длины шкалы и расстояний между любым штрихом и началом или концом шкалы - 0,2 мм;

весы лабораторные общего назначения по ГОСТ 24104:

С наибольшим пределом взвешивания 5 кг, ценой деления - 100 мг, среднее квадратичное отклонение показаний весов - не более 50,0 мг, погрешность от неравноплечности коромысла - не более 250,0 мг, предел допустимой погрешности - 375 мг;

С наибольшим пределом взвешивания 20 кг, ценой деления - 500 мг, среднее квадратичное отклонение показаний весов - не более 150,0 мг, погрешность от неравноплечности коромысла - не более 750,0 мг, предел допустимой погрешности - 1500 мг.

Допускается применение других средств измерения с метрологическими характеристиками и оборудования с техническими характеристиками не хуже указанных в настоящем стандарте.

6 Подготовка к испытанию

6.1 Изготавливают образец в виде прямоугольного параллелепипеда, наибольшие (лицевые) грани которого имеют форму квадрата со стороной, равной стороне рабочих поверхностей плит прибора. Если рабочие поверхности плит прибора имеют форму круга, то наибольшие грани образца также должны иметь форму круга, диаметр которого равен диаметру рабочих поверхностей плит прибора (приложение А, п. А. 2.1).

6.2 Толщина испытываемого образца должна быть меньше длины ребра лицевой грани или диаметра не менее чем в пять раз.

6.3 Грани образца, контактирующие с рабочими поверхностями плит прибора, должны быть плоскими и параллельными. Отклонение лицевых граней жесткого образца от параллельности не должно быть более 0,5 мм.

Жесткие образцы, имеющие разнотолщинность и отклонения от плоскостности, шлифуют.

6.4 Толщину образца-параллелепипеда измеряют штангенциркулем с погрешностью не более 0,1 мм в четырех углах на расстоянии (50,0 ± 5,0) мм от вершины угла и посередине каждой стороны.

Толщину образца-диска измеряют штангенциркулем с погрешностью не более 0,1 мм по образующим, расположенным в четырех взаимно перпендикулярных плоскостях, проходящих через вертикальную ось.

За толщину образца принимают среднеарифметическое значение результатов всех измерений.

6.5 Длину и ширину образца в плане измеряют линейкой с погрешностью не более 0,5 мм.

6.6 Правильность геометрической формы и размеры образца теплоизоляционного материала определяют по ГОСТ 17177.

6.7 Средний размер включений (гранулы заполнителя, крупные поры и т.п.), отличных по своим теплофизическим показателям от основного образца, должен составлять не более 0,1 толщины образца.

Допускается испытание образца, имеющего неоднородные включения, средний размер которых превышает 0,1 его толщины. В протоколе испытания должен быть указан средний размер включений.

6.8 Определяют массу образца М 1 при его получении от изготовителя.

6.9 Образец высушивают до постоянной массы при температуре, указанной в нормативном документе на материал или изделие. Образец считают высушенным до постоянной массы, если потеря его массы после очередного высушивания в течение 0,5 ч не превышает 0,1 %. По окончании сушки определяют массу образца М 2 и его плотность r u , после чего образец немедленно помещают либо в прибор для определения его термического сопротивления, либо в герметичный сосуд.

Допускается испытание влажного образца при температуре холодной лицевой грани более 273 К и перепаде температуры не более 2 К на 1 см толщины образца.

6.10 Образец высушенного насыпного материала должен быть помещен в ящик, дно и крышка которого изготовлены из тонкого листового материала. Длина и ширина ящика должны быть равны соответствующим размерам рабочих поверхностей плит прибора, глубина - толщине испытываемого образца. Толщина образца насыпного материала должна быть не менее чем в 10 раз больше среднего размера гранул, зерен и чешуек, из которых состоит этот материал.

Относительная полусферическая излучательная способность поверхностей дна и крышки ящика должна быть более 0,8 при тех температурах, которые эти поверхности имеют в процессе испытания.

Термическое сопротивление R L листового материала, из которого изготавливают дно и крышку ящика, должно быть известно.

6.11 Пробу насыпного материала делят на четыре равные части, которые поочередно насыпают в ящик, уплотняя каждую часть так, чтобы она заняла соответствующую ей часть внутреннего объема ящика. Ящик закрывают крышкой. Крышку прикрепляют к боковым стенкам ящика.

6.12 Взвешивают ящик с образцом насыпного материала. По определенному значению массы ящика с образцом и предварительно определенным значениям внутреннего объема и массы пустого ящика вычисляют плотность образца насыпного материала.

6.13 Погрешность определения массы и размера образцов не должна быть более 0,5 %.

7 Проведение испытания

7.1 Испытания должны проводиться на предварительно градуированном приборе. Порядок и периодичность градуировки приведены в приложении Б.

7.2 Подлежащий испытанию образец помещают в прибор. Расположение образца - горизонтальное или вертикальное. При горизонтальном расположении образца направление теплового потока сверху вниз.

В процессе испытания разность температур лицевых граней образца D T u должна составлять 10-30 К. Средняя температура образца при испытании должна быть указана в нормативном документе на конкретный вид материала или изделия.

7.3 Устанавливают заданные значения температур рабочих поверхностей плит прибора и последовательно через каждые 300 с проводят измерения:

сигналов тепломера е u и датчиков температур лицевых граней образца, если плотность теплового потока через испытываемый образец измеряют при помощи тепломера;

мощности, подаваемой на нагреватель зоны измерения горячей плиты прибора, и сигналов датчиков температур лицевых граней образца, если плотность теплового потока через испытываемый образец определяют путем измерения электрической мощности, подаваемой на нагреватель зоны измерения горячей плиты прибора.

7.4 Тепловой поток через испытываемый образец считают установившимся (стационарным), если значения термического сопротивления образца, вычисленные по результатам пяти последовательных измерений сигналов датчиков температур и плотности теплового потока, отличаются друг от друга менее чем на 1 %, при этом эти величины не возрастают и не убывают монотонно.

7.5 После достижения стационарного теплового режима измеряют толщину помещенного в прибор образца d u штангенциркулем с погрешностью не более 0,5 %.

7.6 После окончания испытания определяют массу образца M 3 .

8 Обработка результатов испытания

8.1 Вычисляют относительное изменение массы образца вследствие его сушки т r и в процессе испытания т w и плотность образца r u по формулам:

т r = 1 ¾ М 2 )/М 2 , (2)

т w = (М 2 ¾ М 3 )/М 3 , (3)

Объем испытываемого образца V u вычисляют по результатам измерения его длины и ширины после окончания испытания, а толщины - в процессе испытания.

8.2 Вычисляют разность температур лицевых граней D T u и среднюю температуру испытываемого образца T mu по формулам:

D T u = T 1u ¾ T 2u , (5)

T mu = (T 1u + T 2u .)/2 (6)

8.3 При вычислении теплофизических показателей образца и плотности стационарного теплового потока в расчетные формулы подставляют среднеарифметические значения результатов пяти измерений сигналов датчиков разности температур и сигнала тепломера или электрической мощности, выполненных после установления стационарного теплового потока через испытываемый образец.

8.4 При проведении испытания на приборе, собранном по асимметричной схеме, термическое сопротивление образца R u вычисляют по формуле

(7)

где R k принимают равным 0,005м 2 × К/Вт, а для теплоизоляционных материалов и изделий - нулю.

8.5 Эффективную теплопроводность материала образца l effu вычисляют по формуле

(8)

8.6 Термическое сопротивление R u и эффективную теплопроводность l effu образца насыпного материала вычисляют по формулам:

, (9)

. (10)

8.7 Плотность стационарного теплового потока q u через образец, испытываемый на приборе, собранном по асимметричной и симметричной схемам, вычисляют соответственно по формулам:

q u = f u e u , (11)

. (12)

8.8 При проведении испытания на приборе с горячей охранной зоной, в котором плотность теплового потока определяют путем измерения электрической мощности, подаваемой на нагреватель зоны измерения горячей плиты прибора, термическое сопротивление, эффективную теплопроводность и плотность стационарного теплового потока через образец вычисляют по формулам:

, (13)

, (14)

При испытании насыпных материалов в формулы (13) и (14) вместо R k подставляют значение R L ..

8.9 За результат испытания принимают среднеарифметические значения термического сопротивления и эффективной теплопроводности всех испытанных образцов.

9 Протокол испытания

В протоколе испытания должны быть приведены следующие сведения:

Наименование материала или изделия;

Обозначение и наименование нормативного документа, по которому изготовлен материал или изделие;

Предприятие-изготовитель;

Номер партии;

Дата изготовления;

Общее число испытанных образцов;

Тип прибора, на котором проведено испытание;

Положение испытываемых образцов (горизонтальное, вертикальное);

Методика изготовления образцов насыпного материала с указанием термического сопротивления дна и крышки ящика, в котором испытывались образцы;

Размеры каждого образца;

Толщина каждого образца перед началом испытания и в процессе испытания с указанием, проводилось ли испытание при фиксированном давлении на образец или при фиксированной толщине образца;

Фиксированное давление (если оно было фиксировано);

Средний размер неоднородных включений в образцах (если они есть);

Методика сушки образцов;

Относительное изменение массы каждого образца вследствие его сутки;

Влажность каждого образца до начала и после окончания испытания;

Плотность каждого образца в процессе испытания;

Относительное изменение массы каждого образца, произошедшее в процессе испытания;

Температура горячей и холодной лицевых граней каждого образца;

Разность температур горячей и холодной лицевых граней каждого образца;

Средняя температура каждого образца;

Плотность теплового потока через каждый образец после установления стационарного теплового режима;

Термическое сопротивление каждого образца;

Эффективная теплопроводность материала каждого образца;

Среднеарифметическое значение термического сопротивления всех испытанных образцов;

Среднеарифметическое значение эффективной теплопроводности всех испытанных образцов;

Направление теплового потока;

Дата испытания;

Дата последней градуировки прибора (если испытание проведено на оснащенном тепломером приборе);

Для стандартных образцов, использованных при градуировке прибора, должно быть указано: тип, термическое сопротивление, дата поверки, срок действия поверки, организация, проводившая поверку;

Оценка погрешности измерения термического сопротивления или эффективной теплопроводности;

Заявление о полном соответствии или частичном несоответствии процедуры испытания требованиям настоящего стандарта. Если при проведении испытания были допущены отклонения от требований настоящего стандарта, то они должны быть указаны в протоколе испытания.

10 Погрешность определения эффективной теплопроводности

и термического сопротивления

Относительная погрешность определения эффективной теплопроводности и термического сопротивления по данному методу не превышает ±3 %, если испытание проведено в полном соответствии с требованиями настоящего стандарта.

ПРИЛОЖЕНИЕ А

(обязательное)

Требования к приборам для определения эффективной теплопроводности и термического сопротивления при стационарном тепловом режиме

А .1 Схемы прибора

Для измерения эффективной теплопроводности и термического сопротивления при стационарном тепловом режиме применяют приборы:

Собранные по асимметричной схеме, оснащенные одним тепломером, который расположен между испытываемым образцом и холодной плитой прибора или между образцом и горячей плитой прибора (рисунок А.1);

Собранные по симметричной схеме, оснащенные двумя тепломерами, один из которых расположен между испытываемым образцом и холодной плитой прибора, а второй - между образцом и горячей плитой прибора (рисунок А.2);

Прибор, в котором плотность теплового потока, проходящего через испытываемый образец, определяют путем измерения электрической мощности, подаваемой на нагреватель зоны измерения горячей плиты прибора (прибор с горячей охранной зоной) (рисунок А.3).

1 - нагреватель; 2 - тепломер; 3 - испытываемый образец; 4 - холодильник

Рисунок А.1 - Схема прибора с одним тепломером

1 - нагреватель; 2 - тепломеры; 3 - холодильник; 4 - испытываемый образец

Рисунок А.2 - Схема прибора с двумя тепломерами

1 - холодильник; 2 - испытываемые образцы; 3 - плиты нагревателя зоны измерения;

4 - обмотка нагревателя зоны измерения; 5 - плиты нагревателя охранной зоны;

6 - обмотка нагревателя охранной зоны

Рисунок А. 3 - Схема прибора с горячей охранной зоной

А.2 Нагреватель и холодильник

А.2.1 Плиты нагревателя или холодильника могут иметь форму квадрата, сторона которого должна быть не менее 250 мм, или круга, диаметр которого должен быть не менее 250 мм.

А.2.2 Рабочие поверхности плит нагревателя и холодильника должны быть изготовлены из металла. Отклонение от плоскостности рабочих поверхностей должно быть не более 0,025 % их максимального линейного размера.

А.2.3 Относительная полусферическая излучательная способность рабочих поверхностей плит нагревателя и холодильника, соприкасающихся с испытываемым образцом, должна быть более 0,8 при тех температурах, которые эти поверхности имеют в процессе испытания.

А. 3 Тепломер

А.3.1 Размеры рабочих поверхностей тепломера должны быть равны размерам рабочих поверхностей плит нагревателя и холодильника.

А. 3.2 Относительная полусферическая излучательная способность лицевой грани тепломера, соприкасающейся с испытываемым образцом, должна быть более 0,8 при тех температурах, которые эта грань имеет в процессе испытания.

А. 3.3 Зона измерения тепломера должна быть расположена в центральной части его лицевой грани. Ее площадь должна составлять не менее 10 % и не более 40 % всей площади лицевой грани.

А.3.4 Диаметр термопарных проводов, применяемых при изготовлении термоэлектрической батареи тепломера, должен быть не более 0,2 мм.

А.4 Датчики температуры

Число датчиков температуры на каждой рабочей поверхности плит нагревателя или холодильника и лицевой грани тепломера, соприкасающейся с испытываемым образцом, должно быть равно целой части числа 10Ö А и быть не менее двух. Диаметр проводов, подходящих к этим датчикам, должен быть не более 0,6 мм.

А.5 Электрическая измерительная система

Электрическая измерительная система должна обеспечивать измерение сигнала датчиков разности температур поверхностей с погрешностью не более 0,5 %, сигнала тепломера - с погрешностью не более 0,6 % или электрической мощности, подаваемой на нагреватель зоны измерения горячей плиты прибора, - с погрешностью не более 0,2 %.

Суммарная погрешность измерения разности температур поверхностей плит прибора и тепломера, соприкасающихся с лицевыми гранями испытываемого образца не должна быть более 1 %. Суммарная погрешность - сумма погрешностей, возникающих вследствие искажения температурного поля около датчиков температуры, изменения характеристик этих датчиков под воздействием внешних условий и погрешности, вносимой электрической измерительной системой.

А.6 Устройство для измерения толщины испытываемого образца

Прибор должен быть оснащен устройством, позволяющим измерить толщину образца в процессе его испытания штангенциркулем с погрешностью не более 0,5 %.

А.7 Каркас прибора

Прибор должен быть оснащен каркасом, позволяющим сохранять различную ориентацию в пространстве блока прибора, содержащего испытываемый образец.

А.8 Устройство для фиксации испытываемого образца

Прибор должен быть оснащен устройством, которое или создает постоянное заданное давление на помещенный в прибор испытываемый образец, или поддерживает постоянную величину зазора между рабочими поверхностями плит прибора.

Максимальное давление, создаваемое этим устройством на испытываемый образец, должно быть 2,5 кПа, минимальное - 0,5 кПа, погрешность задания давления - не более 1,5 %.

А.9 Устройство для уменьшения боковых теплопотерь или теплопоступлений испытываемого образца

Боковые теплопотери или теплопоступления в процессе испытания должны быть ограничены посредством изоляции боковых граней испытываемого образца слоем теплоизоляционного материала, термическое сопротивление которого не менее термического сопротивления образца.

А. 10 Кожух прибора

Прибор должен быть оснащен кожухом, температура воздуха в котором поддерживается равной средней температуре испытываемого образца.

ПРИЛОЖЕНИЕ Б

(обязательное)

Градуировка прибора, оснащенного тепломером

Б.1 Общие требования

Градуировку прибора, оснащенного тепломером, следует проводить при помощи трех аттестованных в установленном порядке стандартных образцов термического сопротивления, изготовленных соответственно из оптического кварцевого стекла, органического стекла и пенопласта или стекловолокна.

Размеры стандартных образцов должны быть равны размерам образца, подлежащего испытанию. В процессе градуировки прибора температура лицевых граней стандартных образцов должна быть соответственно равна тем температурам, которые в процессе испытания будут иметь лицевые грани испытываемого образца.

Весь диапазон значений термического сопротивления, которые могут быть измерены на приборе, следует разделить на два поддиапазона:

нижней границей первого поддиапазона является минимальное значение термического сопротивления, которое может быть измерено на данном приборе; верхней границей - значение термического сопротивления стандартного образца, изготовленного из органического стекла и имеющего толщину, равную толщине образца, подлежащего испытанию;

нижней границей второго поддиапазона является верхняя граница первого поддиапазона; верхней границей - максимальное значение термического сопротивления, которое может быть измерено на данном приборе.

Б.2 Градуировка прибора, собранного по асимметричной схеме

До начала градуировки следует оценить численное значение термического сопротивления подлежащего испытанию образца по известным справочным данным и определить, какому поддиапазону это значение принадлежит. Градуировку тепломера проводят только в этом поддиапазоне.

Если термическое сопротивление подлежащего испытанию образца относится к первому поддиапазону, градуировку тепломера

проводят при помощи стандартных образцов, изготовленных из оптического кварцевого и органического стекла. Если термическое сопротивление образца относится ко второму поддиапазону, градуировку проводят при помощи стандартных образцов, изготовленных из органического стекла и теплоизоляционного материала.

Помещают в прибор первый стандартный образец с меньшим термическим сопротивлением R S 1 , D T 1 его лицевых граней и выходной сигнал тепломера е 1 по методике, описанной в разделе 7. Затем в прибор помещают второй стандартный образец с большим термическим сопротивлением R S 2 , измеряют разность температур D T 2 его лицевых граней и выходной сигнал тепломера е 2 по этой же методике. По результатам этих измерений вычисляют градуировочные коэффициенты f 1 и f 2 тепломера по формулам:

Значение градуировочного коэффициента тепломера f u , соответствующее значению теплового потока, протекающего через испытываемый образец после установления стационарного теплового потока, определяют путем линейной интерполяции по формуле

. (Б.3)

Б.З Градуировка прибора, собранного по симметричной схеме

Методика определения градуировочного коэффициента каждого тепломера прибора, собранного по симметричной схеме, аналогична методике определения градуировочного коэффициента тепломера, описанной в Б.2.

Б.4 Периодичность градуировки прибора

Градуировка прибора должна быть проведена в течение 24 ч, предшествующих испытанию или последующих за испытанием.

Если согласно результатам градуировок, проводимых в течение 3 мес., изменение градуировочного коэффициента тепломера не превышает ± 1 %, этот прибор можно градуировать один раз в 15 дней. В этом случае результаты испытания могут быть переданы заказчику только после проведения градуировки, последующей за испытанием, и если величина градуировочного коэффициента, определенного по результатам последующей градуировки, отличается от величины коэффициента, определенного по результатам предыдущей градуировки, не более чем на ± 1 %.

Градуировочный коэффициент, используемый при вычислении теплофизических показателей испытываемого образца, определяют как среднеарифметическое значение двух указанных величин этого коэффициента.

Если отличие величины градуировочного коэффициента превышает ± 1 %, результаты всех испытаний, выполненных в промежутке времени между этими двумя градуировками, считают недействительными, и испытания должны быть проведены повторно.

ПРИЛОЖЕНИЕ В

Библиография

ИСО 7345:1987 Теплоизоляция. Физические величины и определения

ИСО 9251:1987 Теплоизоляция. Режимы переноса тепла и свойства материалов

ИСО 8301:1991 Теплоизоляция. Определение термического сопротивления и связанных с ним теплофизических показателей при стационарном тепловом режиме. Прибор, оснащенный тепломером

ИСО 8302:1991 Теплоизоляция. Определение термического сопротивления и связанных с ним теплофизических показателей. Прибор с горячей охранной зоной

Ключевые слова: термическое сопротивление, эффективная теплопроводность, стандартный образец

Введение

1 Область применения

3 Определения и обозначения

4 Общие положения

5 Средства измерения

6 Подготовка к испытанию

7 Проведение испытания

8 Обработка результатов испытания

9 Протокол испытания

10 Погрешность определения эффективной теплопроводности и термического сопротивления

Приложение А Требования к приборам для определения эффективной теплопроводности и термического сопротивления при стационарном тепловом режиме

Приложение Б Градуировка прибора, оснащенного тепломером

Приложение В Библиография

Физические методы анализа основаны на использовании какого-либо специфического физического эффекта или определенного физического свойства вещества. Для газового анализа используют плотность, вязкость, теплопроводность, показатель преломления, магнитную восприимчивость, диффузию, абсорбцию, эмиссию, поглощение электромагнитного излучения, а также селективную абсорбцию, скорость звука, тепловой эффект реакции, электрическую проводимость и др. Некоторые из этих физических свойств и явлений делают возможным непрерывный газовый анализ и позволяют достичь высокой чувствительности и точности измерений. Выбор физической величины или явления очень важен для исключения влияния неизмеряемых компонентов, содержащихся в анализируемой смеси. Использование специфических свойств или эффектов позволяет определять концентрацию нужного компонента в многокомпонентной газовой смеси. Неспецифические физические свойства можно использовать, строго говоря, только для анализа бинарных газовых смесей. Вязкость, показатель преломления и диффузия при анализе газов практического значения не имеют.

Передача тепла между двумя точками с различной температурой происходит тремя путями: конвекцией, излучением и теплопроводностью. При конвекции передача тепла связана с переносом материи (массопередачей); передача тепла излучением происходит без участия материи. Передача тепла теплопроводностью происходит с участием материи, но без массопередачи. Передача энергии происходит вследствие соударения молекул. Коэффициент теплопроводности (X ) зависит только от вида вещества, передающего тепло. Он является специфической характеристикой вещества.

Размерность теплопроводности в системе СГС кал/(с см К), в технических единицах - ккалДмч-К), в международной системе СИ - ВтДм-К). Соотношение этих единиц следующее: 1 кал/(см с К) = 360 ккалДм ч К) = = 418,68 ВтДм-К).

Абсолютная теплопроводность при переходе от твердых к жидким и газообразным веществам изменяется от Х = 418,68 ВтДм-К)] (теплопроводности лучшего проводника тепла - серебра) до X порядка 10 _6 (теплопроводность наименее проводящих газов).

Теплопроводность газов сильно увеличивается с ростом температуры. Для некоторых газов (GH 4: NH 3) относительная теплопроводность с ростом температуры резко возрастает, а для некоторых (Ne) она снижается. По кинетической теории теплопроводность газов не должна зависеть от давления. Однако различные причины приводят к тому, что при увеличении давления теплопроводность немного увеличивается. В диапазоне давлений от атмосферного до нескольких миллибар теплопроводность не зависит от давления, так как средняя величина свободного пробега молекул увеличивается с уменьшением числа молекул в единице объема. При давлении -20 мбар длина свободного пробега молекул соответствует размеру измерительной камеры.

Измерение теплопроводности является старейшим физическим методом газового анализа. Он был описан в 1840 г., в частности, в работах А. Шлейермахера (1888-1889) и с 1928 г. применяется в промышленности. В 1913 г. фирмой Сименс был разработан измеритель концентрации водорода для дирижаблей. После этого в течение многих десятилетий приборы, основанные на измерении теплопроводности, с большим успехом разрабатывались и широко применялись в быстро растущей химической промышленности. Естественно, что сначала анализировали лишь бинарные газовые смеси. Лучшие результаты получают при большой разности теплопроводности газов. Среди газов самую большую теплопроводность имеет водород. На практике оправдалось также измерение концентрации CO s в дымовых газах, так как теплопроводности кислорода, азота и оксида углерода очень близки между собой, что позволяет смесь этих четырех компонентов рассматривать как квазибинарную .

Температурные коэффициенты теплопроводности разных газов неодинаковы, поэтому можно найти температуру, при которой теплопроводности разных газов совпадают (например, 490°С - для диоксида углерода и кислорода, 70°С - для аммиака и воздуха, 75°С - для диоксида углерода и аргона). При решении определенной аналитической проблемы эти совпадения можно использовать, приняв тройную газовую смесь за квазибинарную.

В газовом анализе можно считать, что теплопроводность является аддитивным свойством. Измерив теплопроводность смеси и зная теплопроводность чистых компонентов бинарной смеси, можно вычислить их концентрации. Однако эту простую зависимость нельзя применять к любой бинарной смеси. Так, например, смеси воздух - водяной пар, воздух - аммиак, оксид углерода - аммиак и воздух - ацетилен при определенном соотношении составляющих имеют максимальную теплопроводность. Поэтому применимость метода теплопроводности ограничена определенной областью концентраций. Для многих смесей имеется нелинейная зависимость теплопроводности и состава. Поэтому необходимо снимать градуировочную кривую, по которой должна быть изготовлена шкала регистрирующего прибора.

Датчики теплопроводности (термокондуктометрические датчики) состоят из четырех маленьких наполненных газом камер небольшого объема с помещенными в них изолированно от корпуса тонкими платиновыми проводниками одинаковых размеров и с одинаковым электрическим сопротивлением. Через проводники протекает одинаковый постоянный ток стабильной величины и нагревает их. Проводники - нагревательные элементы - окружены газом. Две камеры содержат измеряемый газ, другие две - сравнительный газ. Все нагревательные элементы включены в мостик Уитетона, при помощи которого измерение разности температур порядка 0,01°С не представляет трудностей. Такая высокая чувствительность требует точного равенства температур измерительных камер, поэтому всю измерительную систему помещают в термостат или в измерительную диагональ моста, включают сопротивление для температурной компенсации. До тех пор пока отвод тепла от нагревательных элементов в измерительных и сравнительных камерах одинаков, мост находится в равновесии. При подаче в измерительные камеры газа с другой теплопроводностью это равновесие нарушается, изменяется температура чувствительных элементов и вместе с этим их сопротивление. Результирующий ток в измерительной диагонали пропорционален концентрации измеряемого газа. Для повышения чувствительности рабочую температуру чувствительных элементов следует повышать, однако нужно следить, чтобы сохранилась достаточно большая разность теплопроводностей газа. Так, для различных газовых смесей имеется оптимальная по теплопроводности и чувствительности температура. Часто перепад между температурой чувствительных элементов и температурой стенок камер выбирается от 100 до 150°С.

Измерительные ячейки промышленных термокондуктометрических анализаторов состоят, как правило, из массивного металлического корпуса, в котором высверлены измерительные камеры. Этим обеспечиваются равномерное распределение температур и хорошая стабильность градуировки. Так как на показания измерителя теплопроводности влияет скорость газового потока, ввод газа в измерительные камеры осуществляют через байпасный канал. Решения различных конструкторов для обеспечения требуемого обмена газами приведены ниже. В принципе, исходят из того, что основной газовый поток связан соединительными каналами с измерительными камерами, через которые газ протекает под небольшим перепадом. При этом диффузия и тепловая конвекция оказывают решающее влияние на обновление газа в измерительных камерах. Объем измерительных камер может быть очень малым (несколько кубических миллиметров), что обеспечивает небольшое влияние конвективной теплоотдачи на результат измерения. Для уменьшения каталитического эффекта платиновых проводников их различными способами заплавляют в тонкостенные стеклянные капилляры. Для обеспечения стойкости измерительной камеры к коррозии покрывают стеклом все газопроводные части. Это позволяет измерять теплопроводность смесей, содержащих хлор, хлористый водород и другие агрессивные газы. Термокондуктометрические анализаторы с замкнутыми сравнительными камерами распространены преимущественно в химической промышленности. Подбор соответствующего сравнительного газа упрощает калибровку прибора. Кроме того, можно получить шкалу с подавленным нулем. Для уменьшения дрейфа нулевой точки должна быть обеспечена хорошая герметичность сравнительных камер. В особых случаях, например при сильных колебаниях состава газовой смеси, можно работать с проточными сравнительными камерами. При этом с помощью специального реагента из измеряемой газовой смеси удаляют один из компонентов (например, СО а раствором едкого калия), а затем направляют газовую смесь в сравнительные камеры. Измерительная и сравнительная ветви различаются в этом случае только отсутствием одного из компонентов. Такой способ часто делает возможным анализ сложных газовых смесей.

В последнее время вместо металлических проводников в качестве чувствительных элементов иногда используют полупроводниковые терморезисторы. Преимуществом терморезисторов является в 10 раз более высокий по сравнению с металлическими термосопротивлениями температурный коэффициент сопротивления. Этим достигается резкое увеличение чувствительности. Однако одновременно предъявляются намного более высокие требования к стабилизации тока моста и температуры стенок камер.

Раньше других и наиболее широко термокондуктометрические приборы начали применять для анализа отходящих газов топочных печей. Благодаря высокой чувствительности, высокому быстродействию, простоте обслуживания и надежности конструкции, а также своей невысокой стоимости анализаторы этого типа в дальнейшем быстро внедрялись в промышленность.

Термокондуктометрические анализаторы приспособлены лучше всего для измерения концентрации водорода в смесях. При выборе сравнительных газов нужно рассматривать также смеси различных газов. В качестве примера минимальных диапазонов измерения для различных газов можно использовать приведенные ниже данные (табл. 6.1).

Таблица 6.1

Минимальные диапазоны измерения для различных газов,

% к объему

Максимальным диапазоном измерения чаще всего является диапазон 0-100%, при этом 90 или даже 99% могут быть подавлены. В особых случаях термокондуктометрический анализатор дает возможность иметь на одном приборе несколько различных диапазонов измерения. Это используется, например, при контроле процессов заполнения и опорожнения охлаждаемых водородом турбогенераторов на тепловых электростанциях. Из-за опасности взрывов заполнение корпуса генератора производят не воздухом, а сначала в качестве продувочного газа вводят диоксид углерода и затем уже водород. Аналогично производят выпуск газа из генератора. С достаточно высокой воспроизводимостью на одном анализаторе могут быть получены следующие диапазоны измерения: 0-100% (объемн.) СО (в воздухе для продувки углекислым газом), 100-0% Н 2 в СО (для заполнения водородом) и 100-80% Н 2 (в воздухе для контроля чистоты водорода во время работы генератора). Это дешевый способ измерения.

Для определения содержания водорода в выделяющемся при электролизе хлористого калия хлоре с помощью термокондуктометрического анализатора можно работать как с запаянным сравнительным газом (S0 2 , Аг), так и с проточным сравнительным газом. В последнем случае смесь водорода и хлора сначала направляют в измерительную камеру, а затем в печь дожигания с температурой > 200°С. Водород сгорает с избыточным хлором и образует хлористый водород. Образовавшаяся смесь НС и С1 2 подается в сравнительную камеру. При этом по разности теплопроводностей определяют концентрацию водорода. Данный метод заметно снижает влияние примеси небольших количеств воздуха.

Для уменьшения погрешности, возникающей при анализе влажного газа, газ необходимо осушать, что осуществляют либо с помощью поглотителя влаги, либо понижением температуры газа ниже точки росы. Имеется еще одна возможность компенсировать влияние влажности, которая применима лишь при проведении измерения по схеме с проточным сравнительным газом.

Для работы с взрывоопасными газами ряд фирм изготавливает приборы во взрывобезопасном исполнении. В этом случае камеры измерителей теплопроводности рассчитывают на высокое давление, на входе и на выходе из камер устанавливают огнепреградители, а выходной сигнал ограничивается искробезопасным уровнем. Однако и такие приборы нельзя использовать для анализа смесей взрывоопасных газов с кислородом или водорода с хлором.

  • Сантиметр - грамм - секунда - система единиц измерения, которая широко использовалась до принятия Международной системы единиц (СИ).
1

При увеличении удельных мощностей двигателей внутреннего сгорания возрастает количество теплоты, которое необходимо отводить от нагретых узлов и деталей. Эффективность современных систем охлаждения и способ увеличения интенсивности теплопередачи практически достигли своего предела. Целью данной работы является исследование инновационных охлаждающих жидкостей для систем охлаждения теплоэнергетических устройств на основе двухфазных систем, состоящих из базовой среды (вода) и наночастиц. Рассмотрен один из методов измерения теплопроводности жидкости под названием 3ω-hot-wire. Представлены результаты измерения коэффициента теплопроводности наножидкости на основе оксида графена при различной концентрации последнего. Установлено, что при применении 1,25 % графена коэффициент теплопроводности наножидкости увеличился на 70 %.

теплопроводность

коэффициент теплопроводности

оксид графена

наножидкость

система охлаждения

испытательный стенд

1. Осипова В.А. Экспериментальное исследование процессов теплообмена: учеб. пособие для вузов. – 3-е изд., перераб. и доп. – М.: Энергия, 1979. – 320 с.

2. Теплопередача /В.П. Исаченко, В.А. Осипова, А.С. Сукомел – М.: Энергия, 1975. – 488 с.

3. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles / J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson Appl. Phys. Lett. 78,718; 2001.

4. Thermal Conductivity Measurements Using the 3-Omega Technique: Application to Power Harvesting Microsystems / David de Koninck; Thesis of Master of Engineering, McGill University, Montréal, Canada, 2008. – 106 с.

5. Thermal Conductivity Measurement / W.A. Wakeham, M.J. Assael 1999 by CRC Press LLC.

Известно, что при современных тенденциях повышения удельных мощностей двигателей внутреннего сгорания, а также к более высоким скоростям и меньшим размерам для микроэлектронных устройств постоянно возрастает количество теплоты, которое необходимо отводить от нагретых узлов и деталей. Применение различных теплопроводящих жидкостей для отвода тепла является одним из наиболее распространенных и эффективных способов. Эффективность современных конструкций охлаждающих устройств, как и обычный способ увеличения интенсивности теплопередачи, практически достигли своего предела. Известно, что обычные охлаждающие жидкости (вода, масла, гликоли, фторуглероды), обладают достаточно низкой теплопроводностью (табл. 1), что является ограничивающим фактором в современных конструкциях систем охлаждения. Для увеличения их теплопроводности можно создать многофазную (минимум двухфазную) дисперсную среду, где роль дисперсии выполняют частицы со значительно большим коэффициентом теплопроводности, чем базовая жидкость. Максвелл в 1881 году предложил добавить твердые частицы с высокой теплопроводностью в базовую теплопроводящую охлаждающую жидкость.

Идея состоит в том, чтобы смешать металлические материалы, такие как серебро, медь, железо, и неметаллические материалы, такие как глинозем, CuO, SiC и углеродные трубки, обладающие более высокой теплопроводностью по сравнению с базовой теплопроводящей жидкостью с меньшим коэффициентом теплопроводности. Первоначально твердые частицы (такие как серебро, медь, железо, углеродные трубки, обладающие более высокой теплопроводностью по сравнению с базовой жидкостью) микронных и даже миллиметровых размеров были смешаны с базовыми жидкостями с получением суспензий. Достаточно большой размер применяемых частиц и трудности в производстве наноразмерных частиц стали ограничивающими факторами в применении таких суспензий. Указанная проблема была решена работами сотрудников Аризонской национальной лаборатории S. Choi и J. Eastman, которые провели эксперименты с металлическими частицами нанометровых размеров . Они соединяли различные металлические наночастицы и наночастицы металлических окислов с различными жидкостями и получили очень интересные результаты. Эти суспензии наноструктурированных материалов были названы «наножидкостями».

Таблица 1

Сравнение коэффициентов теплопроводности материалов для наножидкостей

С целью разработки современных инновационных охлаждающих жидкостей для систем охлаждения высокофорсированных теплоэнергетических устройств нами были рассмотрены двухфазные системы, состоящие из базовой среды (вода, этиленгликоль, масла и др.) и наночастиц, т.е. частиц с характерными размерами от 1 до 100 нм. Важной особенностью наножидкостей является то, что даже при добавлении небольшого количества наночастиц они показывают серьезное повышение в теплопроводности (иногда более, чем в 10 раз). Причем повышение теплопроводности наножидкости зависит от температуры - с ростом температуры увеличивается повышение коэффициента теплопроводности.

При создании таких наножидкостей, представляющих собой двухфазную систему, необходим надежный и достаточно точный метод измерения коэффициента теплопроводности.

Нами рассмотрены разные методы измерения коэффициента теплопроводности для жидкостей . В результате проведенного анализа был выбран «3ω-проводной» метод для измерения теплопроводности наножидкостей с достаточно высокой точностью .

«3ω-проводной» метод используется для одновременного измерения теплопроводности и температуропроводности материалов. Он основан на измерении повышения температуры, зависящей от времени в источнике тепла, то есть горячем проводе, который погружен в жидкость для тестирования. Металлическая проволока одновременно служит электрическим нагревателем сопротивления и термометром сопротивления. Металлические проволоки изготавливаются крайне малыми в диаметре (несколько десятков мкм). Повышение температуры проволоки достигает обычно 10 °C и влиянием конвекции при этом можно пренебречь.

Металлическая проволока длиной L и радиусом r, взвешенная в жидкости, действует как нагреватель и термометр сопротивления, как показано на рис. 1.

Рис. 1. Схема установки метода «3ω горячей проволоки» для измерения теплопроводности жидкости

Сущность используемого метода определения коэффициента теплопроводности заключается в следующем. Переменный ток течет через металлический провод (нагреватель). Характеристика переменного тока определяется уравнением

где I 0 - является амплитудой переменного синусоидального тока; ω - частота тока; t - время.

Переменный ток протекает через проволоку, действуя как нагреватель. В соответствии с законом Джоуля ‒ Ленца определяется количество теплоты, выделяющееся при прохождении по проводнику электрического тока:

и представляет собой суперпозицию источника постоянного тока и 2ω модулированного источника тепла,

где R E является электрическим сопротивлением металлической проволоки в условиях эксперимента, и оно является функцией температуры.

Выделившаяся тепловая мощность порождает изменение температуры в нагревателе, которое также является суперпозицией компоненты постоянного тока и компоненты 2ω переменного тока:

где ΔT DC - амплитуда изменения температуры под действием постоянного тока; ΔT 2ω - амплитуда изменения температуры под действием переменного тока; φ - сдвиг фазы, индуцированный нагревом массы образца.

Электрическое сопротивление провода зависит от температуры и это и есть 2ω компонент переменного тока в сопротивлении проволоки:

где C rt - температурный коэффициент сопротивления для металлического провода; R E0 - справочное сопротивление нагревателя при температуре T 0 .

Обычно T 0 это температура объемного образца.

Напряжение на металлическом проводе может быть получено как,

(6)

В уравнении (6) напряжение на проводе содержит: падение напряжения из-за сопротивления постоянного тока провода при 1ω и два новых компонента, пропорциональные повышению температуры в проводе при 3ω и при 1ω. 3ω компонента напряжения может быть извлечена при помощи усилителя, а затем используется для вывода амплитуды изменения температуры при 2ω:

Частотная зависимость изменения температуры ΔT 2ω получена изменением частоты переменного тока при постоянном напряжении V 1ω . В то же самое время зависимость изменения температуры ΔT 2ω от частоты может быть аппроксимирована как

где α f - коэффициент температуропроводности; k f - коэффициент теплопроводности базовой жидкости; η - константа.

Изменение температуры при частоте 2ω в металлической проволоке может быть выведено при помощи компоненты напряжения частоты 3ω, как показано в уравнении (8). Коэффициент теплопроводности жидкости k f определяется по наклону 2ω изменения температуры металлической проволоки по отношению к частоте ω,

(9)

где Р - применяемая мощность; ω - является частотой приложенного электрического тока; L - длина металлической проволоки; ΔT 2ω - амплитуда изменения температуры на частоте 2ω в металлической проволоке.

3ω-проводной метод имеет несколько преимуществ перед традиционным методом горячего провода:

1) температурные колебания могут быть достаточно маленькими (ниже 1K, по сравнению с приблизительно 5K для метода горячей проволоки) в исследуемой жидкости, чтобы сохранить постоянные свойства жидкости;

2) фоновые шумы, такие как изменение температуры, имеют гораздо меньшее влияние на результаты измерений.

Эти преимущества делают этот метод идеально подходящим для измерения температурной зависимости коэффициента теплопроводности наножидкостей.

Установка для измерения коэффициента теплопроводности включает следующие компоненты: мост Уинстона; генератор сигналов; анализатор спектра; осциллограф.

Мост Уинстона представляет собой схему, применяемую для сравнения неизвестного сопротивления R x с известным сопротивлением R 0 . Схема моста приведена на рис. 2. Четыре плеча моста Уинстона АВ, ВС, АД и ДС представляют собой сопротивления Rх, R0, R1 и R2 соответственно. В диагональ ВД включается гальванометр, а в диагональ АС подсоединяется источник питания.

Если соответствующим образом подобрать величины переменных сопротивлений R1 и R2, то можно добиться равенства потенциалов точек В и Д: φ В = φ Д. В этом случае ток через гальванометр не пойдет, то есть I g = 0. При этих условиях мост будет сбалансирован, и можно найти неизвестное сопротивления Rх. Для этого воспользуемся правилами Кирхгофа для разветвленных цепей. Применяя первое и второе правила Кирхгофа, получим

R х = R 0 ·R 1 /R 2 .

Точность в определении R х указанным методом в большой степени зависит от выбора сопротивлений R 1 и R 2 . Наибольшая точность достигается при R 1 ≈ R 2 .

Генератор сигналов выступает в качестве источника электрических колебаний в диапазоне 0,01 Гц - 2 МГц с высокой точностью (с дискретностью через 0,01 Гц). Марка генератора сигналов Г3-110.

Рис. 2. Схема моста Уинстона

Анализатор спектра предназначен для выделения 3ω составляющей спектра. Перед началом работы анализатор спектра тестировался на соответствие величины напряжения третьей гармоники. Для этого на вход анализатора спектра подается сигнал с генератора Г3-110 и параллельно - на широкополосный цифровой вольтметр. Эффективное значение амплитуды напряжения сравнивалось на анализаторе спектра и вольтметре. Расхождение значений составило 2 %. Калибровка анализатора спектра также выполнялась на внутреннем тесте прибора, на частоте 10 кГц. Величина сигнала на несущей частоте составила 80 мВ.

Осциллограф C1-114/1 предназначен для исследования формы электрических сигналов.

Перед началом исследования нагреватель (проволока) должен быть помещен в исследуемый образец жидкости. Проволока не должна касаться стенок сосуда. Далее производили сканирование по частоте в диапазоне от 100 до 1600 Гц. На анализаторе спектра при исследуемой частоте фиксируется величина сигнала 1, 2, 3 гармоники в автоматическом режиме.

Для измерения амплитуды силы тока использовали последовательно включенный в цепь резистор сопротивлением ~ 0,47 Ом. Величина должна быть такая, чтобы она не превышала номинал измерительного плеча порядка 1 Ом. С помощью осциллографа находили напряжение U. Зная R и U, находили амплитуду силы тока I 0 . Для расчета приложенной мощности измеряется напряжение в цепи.

Вначале исследуется широкий частотный диапазон. Определяется более узкая область частот, где линейность графика наиболее высока. Затем в выбранной области частот производится измерение с более мелким шагом частоты.

В табл. 2 представлены результаты измерения коэффициента теплопроводности наножидкости, представляющей собой 0,35 % суспензию оксида графена в базовой жидкости (воде), с помощью медной изолированной проволоки длиной 19 см, диаметром 100 мкм, при температуре 26 °С для частотного диапазона 780...840 Гц.

На рис. 3 приведен общий вид стенда для измерения коэффициента теплопроводности жидкости.

В табл. 3 представлена зависимость коэффициента теплопроводности суспензии оксида графена от его концентрации в жидкости при температуре 26 °С. Измерения коэффициентов теплопроводности наножидкости осуществлялись при различной концентрации оксида графена от 0 до 1,25 %.

Таблица 2

Результаты измерения коэффициента теплопроводности наножидкости

Частотный диапазон

Круговая частота

Сила тока

Амплитуда напряжения третьей гармоники

Изменение температуры

Логарифм круговой частоты

Мощность

Наклон графика

Коэффициент теплопроводности

Рис. 3. Общий вид стенда для измерения коэффициента теплопроводности жидкости

В табл. 3 также приведены значения коэффициентов теплопроводности, определенные по формуле Максвелла.

(10)

где k - коэффициент теплопроводности наножидкости; k f - коэффициент теплопроводности базовой жидкости; k p - коэффициент теплопроводности дисперсной фазы (наночастиц); φ - величина объемной фазы каждой из фаз дисперсий.

Таблица 3

Коэффициент теплопроводности суспензии оксида графена

Отношение коэффициентов теплопроводности k эксп /k теор и k эксп /k табл. воды приведены на рис. 4.

Такие отклонения экспериментальных данных от предсказанных классическим Максвелловским уравнением, по нашему мнению, могут быть связаны с физическими механизмами увеличения теплопроводности наножидкости, а именно:

За счет броуновского движения частиц; перемешивание жидкости создает микро-конвективный эффект, тем самым повышая энергию теплопереноса;

Переносом тепла по механизму перколяции преимущественно вдоль кластерных каналов, образующихся в результате агломерации наночастиц, пронизывающих всю структуру растворителя (обычной жидкости);

Молекулы базовой жидкости образуют высоко ориентированные слои вокруг наночастиц, таким образом увеличивая объемную долю наночастиц.

Рис. 4. Зависимость отношения коэффициентов теплопроводности от концентрации оксида графена

Работа выполнена с привлечением оборудования Центра коллективного пользования научным оборудованием «Диагностика микро- и наноструктур» при финансовой поддержке Министерства образования и науки РФ.

Рецензенты:

Епархин О.М., д.т.н., профессор, директор Ярославского филиала ФГБОУ ВПО «Московский государственный университет путей сообщения», г. Ярославль;

Амиров И.И., д.ф.-м.н., научный сотрудник Ярославского филиала ФГБУН «Физико-технологический институт» Российской академии наук, г. Ярославль.

Работа поступила в редакцию 28.07.2014.

Библиографическая ссылка

Жаров А.В., Савинский Н.Г., Павлов А.А., Евдокимов А.Н. ЭКСПЕРИМЕНТАЛЬНЫЙ МЕТОД ИЗМЕРЕНИЯ ТЕПЛОПРОВОДНОСТИ НАНОЖИДКОСТИ // Фундаментальные исследования. – 2014. – № 8-6. – С. 1345-1350;
URL: http://fundamental-research.ru/ru/article/view?id=34766 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

В процессе их теплового движения. В жидкостях и твердых телах- диэлектриках - перенос теплоты осуществляется путем непосредственной передачи теплового движения молекул и атомов соседним частицам вещества. В газообразных телах распространение теплоты теплопроводностью происходит вследствие обмена энергией при соударении молекул, имеющих различную скорость теплового движения. В металлах теплопроводность осуществляется главным образом вследствие движения свободных электронов.

В основной зеком теплопроводности входит ряд математических понятий, оп-ределения которых, целесообразно напомнить и пояснить.

Температурное поле — это со-вокупности значений температуры во всех точках тела в данный момент време-ни. Математически оно описывается ввиде t = f (x, y, z, τ ). Различают стационарное температурное поле, когда температура во всех точках тела не зависит от времени (не изменяется с течением времени), и нестационарное температурное поле . Кроме то-го, если температура изменяется только по одной или двум пространственным координатам, то температурное поле на-зывают соответственно одно- или двух - мерным.

Изотермическая поверхность - это геометрическое место точек, температура в которых одинакова.

Градиент температуры grad t есть вектор, направленный по нор-мали к изотермической поверхности и численно равный производной от тем-пературы по этому направлению.

Согласно основному закону тепло-проводности — закону Фурье (1822 г.), вектор плотности теплового потока, передаваемого теплопроводностью, пропорционален градиенту температуры:

q = - λ grad t , (3)

где λ — коэффициент теплопро-водности вещества; его единица измерения Вт /(м·К ).

Знак минус в уравнении (3) ука-зывает на то, что вектор q направлен противоположно вектору grad t , т.е. в сторону наибольшего уменьшения температуры.

Тепловой поток δQ через произволь-но ориентированную элементарную пло-щадку dF равен скалярному произведе-нию вектора q на вектор элементарной площадки dF , а полный тепловой поток Q через всю поверхность F определяется интегрированием этого произведения по поверхности F:

КОЭФФИЦИЕНТ ТЕПЛОПРОВОДНОСТИ

Коэффициент теплопроводности λ в законе Фурье (3) характеризует спо-собность данного вещества проводить теплоту. Значения коэффициентов тепло-проводности приводятся в справочниках по теплофизическим свойствам веществ. Численно коэффициент теплопроводности λ = q/ grad t равен плотности теплового потока q при градиенте температуры grad t = 1 К/м . Наиболь-шей теплопроводностью обладает легкий газ — водород. При комнатных условиях коэффициент теплопроводности водорода λ = 0,2 Вт /(м·К ). У более тяжелых газов теплопроводность меньше — у воз-духа λ = 0,025 Вт /(м·К ), у диоксида уг-лерода λ = 0,02 Вт /(м·К ).


Наибольшим коэффициентом теплопроводности обладают чистые серебро и медь: λ = 400 Вт /(м·К ). Для углеродистых сталей λ = 50 Вт /(м·К ). У жидкостей коэффициент теплопроводности, как правило, меньше 1 Вт /(м·К ). Вода является одним из лучших жидких проводников теплоты, для нее λ = 0,6 Вт /(м·К ).

Коэффициент теплопроводности неметаллических твердых материалов обычно ниже 10 Вт /(м·К ).

Пористые материалы - пробка, различные волокнистые наполнители типа органической ваты - обладают наименьшими коэффициентами теплопроводности λ <0,25 Вт /(м·К ), приближающимся при малой плотности набивки к коэффициенту теплопроводности воздуха, наполняющего поры.

Значительное влияние на коэффициент теплопроводности могут оказывать температура, давление, а у пористых материалов ещё и влажность. В справочниках всегда приводятся условия, при которых определялся коэффициент теплопроводности данного вещества, и для других условий эти данныеиспользовать нельзя. Диапазоны значений λ для различных материалов приведены на рис. 1.

Рис.1. Интервалы значений коэффициентов теплопроводности различных веществ.

Перенос теплоты теплопроводностью

Однородная плоская стенка .

Про-стейшей и очень распространенной за-дачей, решаемой теорией теплообмена, является определение плотности тепло-вого потока, передаваемого через плоскую стенку толщиной δ , на повер-хностях которой поддерживаются темпе-ратуры t w1 и t w2 . (рис.2). Температура изменяется только по толщине пластины - по одной координате х. Такие за-дачи называются одномерными, решения их наиболее просты, и в данном курсе мы ограничимся рассмотрением только од-номерных задач.

Учитывая, что для од-номерного случая :

grad t = dt/dх , (5)

и используя основной закон теплопроводности (2), получаем дифференци-альное уравнение стационарной тепло-проводности для плоской стенки:

В стационарных условиях, когда энергия не расходуется на нагрев, плот-ность теплового потока q неизменна по толщине стенки. В большинстве практи-ческих задач приближенно пред-полагается, что коэффициент тепло-проводности λ не зависит от температуры и одинаков по всей толщине стенки. Зна-чение λ находят в справочниках при температуре:

средней между температурами поверхно-стей стенки. (Погрешность расчетов при этом обычно меньше погрешности исход-ных данных и табличных величин, а при линейной зависимости коэффициента теплопроводности от температуры: λ = а+ bt точная расчетная формула для q не отличается от приближенной). При λ = const :

(7)

т.е. зависимость температуры t от координаты х линейна (рис. 2).

Рис.2. Стационарное распределение темпе-ратуры по толщине плоской стенки.

Разделив переменные в уравнении (7) и проинтегрировав по t от t w1 до t w2 и по х от 0 до δ :

, (8)

получим зависимость для расчета плот-ности теплового потока:

, (9)

или мощность теплового потока (тепловой поток):

(10)

Следовательно, количество теплоты, переданной через 1 м 2 стенки, прямо пропорционально коэффициенту теплопроводности λ и разности температур наружных поверхностей стенки (t w1 - t w2 ) и обратно пропорционально толщине стенки δ . Общее количество теплоты через стенку площадью F еще и пропорционально этой площади.

Полученная простейшая формула (10) имеет очень широкое распространение в тепло-вых расчетах. По этой формуле не только рассчитывают плотности теплового потока через плоские стенки, но и делают оценки для случаев более сложных, уп-рощенно заменяя в расчетах стенки сложной конфигурации на плоскую стенку. Иногда уже на основании оценки тот или иной вариант отвергается без дальней-ших затрат времени на его детальную проработку.

Температура тела в точке х определяется по формуле:

t x = t w1 - (t w1 - t w2) × (x × d)

Отношение λF/δ называется тепло-вой проводимостью стенки, а обратная величина δ/λF тепловым или термическим сопротивлением стенки и обозначается R λ . Пользуясь понятием термического сопро-тивления, формулу для расчета теплово-го потока можно представить в виде:

Зависимость (11) аналогична закону Ома в электротехни-ке (сила электрического тока равна раз-ности потенциалов, деленной на электри-ческое сопротивление проводника, по ко-торому течет ток).

Очень часто термическим сопротив-лением называют величину δ/λ, которая равна термическому сопротивлению плоской стенки площадью 1 м 2 .

Примеры расчетов .

Пример 1 . Определить тепловой поток через бетонную стену здания толщиной 200 мм , высотой H = 2,5 м и длиной 2 м , если температуры на ее поверхностях: t с1 = 20 0 С, t с2 = - 10 0 С, а коэффициент теплопроводно-сти λ =1 Вт /(м·К ):

= 750 Вт .

Пример 2 . Определить коэффициент теплопроводности материала стенки толщиной 50 мм , если плотность теплового потока через нее q = 100 Вт /м 2 , а разность температур на поверхностях Δt = 20 0 С.

Вт /(м·К ).

Многослойная стенка .

Формулой (10) можно воспользоваться и для расчета теплового потока через стенку, состоя-щую из нескольких (n ) плотно прилегающих друг к другу слоев разнородных материа-лов (рис. 3), например, головку цилиндров, прокладку и блока цилиндров, выполненных из разных материалов, и т д.

Рис.3. Распределение температуры по толщине многослойной плоской стенки.

Термическое сопротивление такой стенки равно сумме термических сопротивлений отдельных слоев:

(12)

В формулу (12) нужно подставить разность температур в тех точках (по-верхностях), между которыми «включе-ны» все суммируемые термические сопротивления, т.е. в данном случае: t w1 и t w(n+1) :

, (13)

где i - номер слоя.

При стационарном режиме удельный тепловой поток через многослойную стенку постоянен и для всех слоев одинаков. Из (13) следует:

. (14)

Из уравнения (14) следует, что общее термическое сопротивление многослойной стенки равно сумме сопротивлений каждого слоя.

Формулу (13) легко получить, записав разность температур по формуле (10) для каждого из п слоев многослой-ной стенки и сложив все п выражений с учетом того, что во всех слоях Q имеет одно и то же значение. При сложении все промежуточные температуры сократятся.

Распределение температуры в преде-лах каждого слоя — линейное, однако, в различных слоях крутизна температур-ной зависимости различна, поскольку со-гласно формуле (7) (dt/dx ) i = - q/λ i . Плотность теплового потока, проходяще-го через все слон, в стационарном режи-ме одинакова, а коэффициент теплопро-водности слоев различен, следовательно, более резко температура меняется в сло-ях с меньшей теплопроводностью. Так, в примере на рис.4 наименьшей тепло-проводностью обладает материал второ-го слоя (например, прокладки), а наибольшей — третьего слоя.

Рассчитав тепловой поток через мно-гослойную стенку, можно определить па-дение температуры в каждом слое по соотношению (10) и найти температу-ры на границах всех слоев. Это очень важно при использовании в качестве теплоизоляторов материалов с ограничен-ной допустимой температурой.

Температура слоев определяется по следующей формуле:

t сл1 = t c т1 - q × (d 1 × l 1 -1)

t сл2 = t c л1 - q × (d 2 × l 2 -1)

Контактное термическое сопротивле-ние . При выводе формул для многослойной стенки предполагалось, что слои плотно прилегают друг к другу, и благодаря хорошему контакту соприкасающиеся поверхности разных слоев имеют одну и ту же температуру. Идеально плотный контакт между отдельными слоями многослойной стенки получается, если одни из слоев наносят на другой слой в жидком состоянии или в виде текучего раствора. Твердые тела касаются друг друга только вершинами профилей шеро-ховатостей (рис.4).

Площадь контакта вершин пренебрежимо мала, и весь тепловой по-ток идет через воздушный зазор (h ). Это создает дополнительное (контактное) термическое сопротивление R к . Термические контактные сопротивления, могут быть определены самостоятельно с использованием соответствующих эмпирических зависимостей или экспериментально. Например, термическое сопротивление зазора в 0,03 мм примерно эквивалентно термическому сопро-тивлению слоя стали толщиной около 30 мм .

Рис.4. Изображение контактов двух шерохо-ватых поверхностей.

Методы снижения термического контактного сопротивления. Полное термическое сопротивление контакта определяется чистотой обработки, нагрузкой, теплопроводностью среды, коэффициентами теплопроводности материалов контактирующих деталей и другими факторами.

Наибольшую эффективность снижения термического сопротивления дает введение в контактную зону среды с теплопроводностью, близкой к теплопроводности металла.

Существуют следующие возможности заполнения контактной зоны веществами:

Использование прокладок из мягких металлов;

Введение в контактную зону порошкообразного вещества с хорошей тепловой проводимостью;

Введение в зону вязкого вещества с хорошей тепловой проводимостью;

Заполнение пространства между выступами шероховатостей жидким металлом.

Наилучшие результаты получены при заполнении контактной зоны расплавленным оловом. В этом случае термическое сопротивление контакта практически становится равным нулю.

Цилиндрическая стенка .

Очень часто теплоносители движутся по трубам (цилиндрам), и требуется рассчитать тепловой поток, передаваемый через цилиндрическую стенку трубы (цилиндра). Задача о передаче теплоты через цилиндрическую стенку (при известных и постоянных значениях температуры на внутренней и наружной поверхностях) также является одномерной, если ее рассматри-вать в цилиндрических координатах (рис.4).

Температура изменяется только вдоль радиуса, а по длине трубы l и по ее периметру остается неизменной.

В этом случае уравнение теплового потока имеет вид:

. (15)

Зависимость (15) показывает, что количество теплоты, переданной через стенку цилиндра, прямо пропорционально коэффициенту теплопроводности λ , длине трубы l и температурному напору (t w1 - t w2 ) и обратно пропорционально натуральному логарифму отношения внешнего диаметра цилиндра d 2 к его внутреннему диаметру d 1 .

Рис. 4. Изменение температуры по толщине однослойной цилиндрической стенки.

При λ = const распределение темпера-туры порадиусу r однослойной цилиндрической стенки подчиняется ло-гарифмическому закону (рис. 4).

Пример . Во сколько раз уменьшаются тепловые потери через стенку здания, если между двумя слоями кирпичей толщиной по 250 мм установить прокладку пенопласта толщиной 50 мм . Коэффициенты теплопроводности соответственно равны: λ кирп . = 0,5 Вт /(м·К ); λ пен. . = 0,05 Вт /(м·К ).