Гравитационная постоянная измерена новыми методами. Физики уточнили значение гравитационной постоянной в четыре раза

Как ни странно это может показаться, но с точным определением гравитационной постоянной у исследователей всегда были проблемы. Авторы статьи говорят о трех сотнях предыдущих попыток сделать это, но все они приводили к значениям, которые не совпадали с другими. Даже в последние десятилетия, когда точность измерений значительно возросла, ситуация оставалась прежней — данные друг с другом, как и раньше, совпадать отказывались.

Основной метод измерения G остался неизменным с 1798 года, когда Генри Кавендиш решил использовать для этого крутильные (или торсионные) весы. Из школьного курса известно, что собой представляла такая установка. В стеклянном колпаке на метровой нити из посеребренной меди висело деревянное коромысло из свинцовых шаров, каждый по 775 г.

Wikimedia Commons Вертикальный разрез установки (Копия рисунка из отчёта Г. Кавендиша «Experiments to determine the Density of the Earth», опубликованного в Трудах Лондонского Королевского Общества за 1798 г. (часть II) том 88 стр.469-526)

К ним подносили свинцовые шары массой 49,5 кг, и в результате действия гравитационных сил коромысло закручивалось на некий угол, зная который и зная жесткость нити, можно было вычислить величину гравитационной постоянной.

Проблема состояла в том, что, во-первых, гравитационное притяжение очень невелико, плюс на результат могут влиять другие массы, экспериментом не учтенные и от которых не было возможности экранироваться.

Второй минус, как ни странно, сводился к тому, что атомы в подносимых массах находились в постоянном движении, и при малом воздействии гравитации этот эффект тоже сказывался.

Ученые решили добавить к гениальной, но в данном случае недостаточной, идее Кавендиша свой метод и использовали вдобавок другой прибор, квантовый интерферометр, известный в физике под названием СКВИД (от англ. SQUID, Superconducting Quantum Interference Device — «сверхпроводящий квантовый интерферометр»; в буквальном переводе с английского squid — «кальмар»; сверхчувствительные магнитометры, используемые для измерения очень слабых магнитных полей ).

Этот прибор отслеживает минимальные отклонения от магнитного поля.

Заморозив лазером 50 кг шара из вольфрама до температур, близких к абсолютному нулю, отследив по изменениям магнитного поля перемещения в этом шаре атомов и, таким образом, исключив их влияние на результат измерения, исследователи получили значение гравитационной постоянной с точностью 150 частей на миллион, то есть 15 тысячных процента. Теперь значение этой постоянной, заявляют ученые, равно 6,67191(99)·10 −11 м 3 ·с −2 ·кг −1 . Предыдущее значение G составляло 6,67384(80)·10 −11 м 3 ·с −2 ·кг −1 .

И это довольно странно.

Гравитационная постоянная является основой для перевода других физических и астрономических величин, таких, например, как массы планет во Вселенной, включая Землю, а также других космических тел, в традиционные единицы измерения, и пока она все время другая. В 2010 году , в которой американские ученые Гарольд Паркс и Джеймс Фаллер предлагали уточненное значение 6,67234(14)·10 −11 м 3 ·с −2 ·кг −1 . Это значение было получено ими путем регистрации с помощью лазерного интерферометра изменения расстояний между маятниками, подвешенными на струнах, при их колебаниях относительно четырех вольфрамовых цилиндров — источников гравитационного поля — с массами 120 кг каждый. Второе плечо интерферометра, служащее стандартом расстояния, фиксировалось между точками подвеса маятников. Полученная Парксом и Фаллером величина оказалась на три стандартных отклонения меньше величины G , рекомендованной в 2008 году Комитетом данных для науки и техники (CODATA) , но соответствует более раннему значению CODATA, представленному в 1986 году. Тогда сообщалось , что пересмотр величины G, произошедший в период с 1986 по 2008 год был вызван исследованиями неупругости нитей подвесок в крутильных весах.

Qing Li et al. / Nature

Физики из Китая и России уменьшили погрешность гравитационной постоянной в четыре раза - до 11,6 частей на миллион, поставив две серии принципиально разных опытов и уменьшив до минимума систематические погрешности, искажающие результаты. Статья опубликована в Nature .

Впервые гравитационную постоянную G , входящую в закон всемирного тяготения Ньютона, измерил в 1798 году британский физик-экспериментатор Генри Кавендиш . Для этого ученый использовал крутильные весы, построенные священником Джоном Мичеллом . Простейшие крутильные весы, конструкция которых была придумана в 1777 году Шарлем Кулоном , состоят из вертикальной нити, на которой подвешено легкое коромысло с двумя грузами на концах. Если поднести к грузам два массивных тела, под действием силы притяжения коромысло начнет поворачиваться; измеряя угол поворота и связывая его с массой тел, упругими свойствами нити и размерами установки, можно вычислить значение гравитационной постоянной. Более подробно с механикой крутильных весов можно разобраться, решая соответствующую задачу .

Полученное Кавендишем значение для постоянной составило G = 6,754×10 −11 ньютонов на метр квадратный на килограмм, а относительная погрешность опыта не превышала одного процента.

Модель крутильных весов, с помощью которых Генри Кавендиш впервые измерил гравитационное притяжение между лабораторными телами

Science Museum / Science & Society Picture Library

С тех пор ученые поставили более двухсот экспериментов по измерению гравитационной постоянной, однако так и не смогли существенно улучшить их точность. В настоящее время значение постоянной, принятое Комитетом данных для науки и техники (CODATA) и рассчитанное по результатам 14 наиболее точных экспериментов последних 40 лет, составляет G = 6,67408(31)×10 −11 ньютонов на метр квадратный на килограмм (в скобках указана погрешность последних цифр мантиссы). Другими словами, ее относительная погрешность примерно равна 47 частей на миллион, что всего в сто раз меньше, чем погрешность опыта Кавендиша и на много порядков больше, чем погрешность остальных фундаментальных констант. Например, ошибка измерения постоянной Планка не превышает 13 частей на миллиард, постоянной Больцмана и элементарного заряда - 6 частей на миллиард, скорости света - 4 частей на миллиард. В то же время, физикам очень важно знать точное значение постоянной G , поскольку оно играет ключевую роль в космологии, астрофизике, геофизике и даже в физике частиц. Кроме того, высокая погрешность постоянной мешает переопределить значения других физических величин.

Скорее всего, низкая точность постоянной G связана со слабостью сил гравитационного притяжения, которые возникают в наземных экспериментах, - это мешает точно измерить силы и приводит к большим систематическим погрешностям , обусловленным конструкцией установок. В частности, заявленная погрешность некоторых экспериментов, использованных при расчете значения CODATA, не превышала 14 частей на миллион, однако различие между их результатами достигало 550 частей на миллион. В настоящее время не существует теории, которая могла бы объяснить такой большой разброс результатов. Скорее всего, дело в том, что в некоторых экспериментах ученые упускали из виду какие-то факторы, которые искажали значения постоянной. Поэтому все, что остается физикам-экспериментаторам - уменьшать систематические погрешности, минимизируя внешние воздействия, и повторять измерения на установках с принципиально разной конструкцией.

Именно такую работу провела группа ученых под руководством Цзюнь Ло (Jun luo) из Университета науки и технологий Центрального Китая при участии Вадима Милюкова из ГАИШ МГУ .

Для уменьшения погрешности исследователи повторяли опыты на нескольких установках с принципиально разной конструкцией и различными значениями параметров. На установках первого типа постоянная измерялась с помощью метода TOS (time-of-swing), в котором величина G определяется по частоте колебаний крутильных весов. Чтобы повысить точность, частота измеряется для двух различных конфигураций: в «ближней» конфигурации внешние массы находятся поблизости от равновесного положения весов (эта конфигурация представлена на рисунке), а в «дальней» - перпендикулярно равновесному положению. В результате частоты колебаний в «дальней» конфигурации оказывается немного меньше, чем в «ближней» конфигурации, и это позволяет уточнить значение G .

С другой стороны, установки второго типа полагались на метод AAF (angular-acceleration-feedback) - в этом методе коромысло крутильных весов и внешние массы вращаются независимо, а их угловое ускорение измеряется с помощью системы управления с обратной связью, которая поддерживает нить незакрученной. Это позволяет избавиться от систематических ошибок, связанных с неоднородностью нити и неопределенностью ее упругих свойств.

Схема экспериментальных установок по измерению гравитационной постоянной: метод TOS (a) и AAF (b)

Qing Li et al. / Nature

Фотографии экспериментальных установок по измерению гравитационной постоянной: метод TOS (a–c) и AAF (d–f)

Qing Li et al. / Nature

Кроме того, физики постарались до минимума сократить возможные систематические ошибки. Во-первых, они проверили, что гравитирующие тела, участвующие в опытах, действительно однородны и близки к сферической форме - построили пространственное распределение плотности тел с помощью сканирующего электронного микроскопа , а также измерили расстояние между геометрическим центром и центром масс двумя независимыми методами. В результате ученые убедились, что колебания плотности не превышают 0,5 части на миллион, а эксцентриситет - одной части на миллион. Кроме того, исследователи поворачивали сферы на случайный угол перед каждым из опытов, чтобы скомпенсировать их неидеальности.

Во-вторых, физики учли, что магнитный демпфер , который используется для подавлений нулевых мод колебаний нити, может вносить вклад в измерение постоянной G , а затем изменили его конструкцию таким образом, чтобы этот вклад не превышал нескольких частей на миллион.

В-третьих, ученые покрыли поверхность масс тонким слоем золотой фольги, чтобы избавиться от электростатических эффектов, и пересчитали момент инерции крутильных весов с учетом фольги. Отслеживая электростатические потенциалы частей установки в ходе опыта, физики подтвердили, что электрические заряды не влияют на результаты измерений.

В-четвертых, исследователи учли, что в методе AAF кручение происходит в воздухе, и скорректировали движение коромысла с учетом сопротивления воздуха. В методе TOS все части установки находились в вакуумной камере, поэтому подобные эффекты можно было не учитывать.

В-пятых, экспериментаторы поддерживали температуру установки постоянной в течение опыта (колебания не превышали 0,1 градуса Цельсия), а также непрерывно измеряли температуру нити и корректировали данные с учетом едва заметных изменений ее упругих свойств.

Наконец, ученые учли, что металлическое покрытие сфер позволяет им взаимодействовать с магнитным полем Земли, и оценили величину этого эффекта. В ходе эксперимента ученые каждую секунду считывали все данные, включая угол поворота нити, температуру, колебания плотности воздуха и сейсмические возмущения, а затем строили полную картину и рассчитывали на ее основании значение постоянной G .

Каждый из опытов ученые повторяли много раз и усредняли результаты, а затем изменяли параметры установки и начинали цикл сначала. В частности, опыты с использованием метода TOS исследователи провели для четырех кварцевых нитей различного диаметра, а в трех экспериментах со схемой AAF ученые изменяли частоту модулирующего сигнала. На проверку каждого из значений физикам понадобилось около года, а суммарно эксперимент продлился более трех лет.

(a) Зависимость от времени периода колебаний крутильных весов в методе TOS; сиреневые точки отвечают «ближней» конфигурации, синие - «дальней». (b) Усредненные значения гравитационной постоянной для различных установок TOS

После изучения курса физики в головах у учащихся остаются всевозможные постоянные и их значения. Тема гравитации и механики не становится исключением. Чаще всего ответить на вопрос о том, какое значение имеет гравитационная постоянная, они не могут. Но всегда однозначно ответят, что она присутствует в законе всемирного тяготения.

Из истории гравитационной постоянной

Интересно, что в работах Ньютона нет такой величины. Она появилась в физике существенно позже. Если быть конкретнее, то только в начале девятнадцатого века. Но это не значит, что ее не было. Просто ученые ее не определили и не узнали ее точное значение. Кстати, о значении. Гравитационная постоянная постоянно уточняется, поскольку является десятичной дробью с большим количеством цифр после запятой, перед которой стоит ноль.

Именно тем, что эта величина принимает такое маленькое значение, объясняется то, что действие сил гравитации незаметно на небольших телах. Просто из-за этого множителя сила притяжения оказывается ничтожно маленькой.

Впервые опытным путем установил значение, которое принимает гравитационная постоянная, физик Г. Кавендиш. И случилось это в 1788 году.

В его опытах использовался тонкий стержень. Он был подвешен на тоненькой проволоке из меди и имел длину около 2 метров. К концам этого стержня были прикреплены два одинаковых свинцовых шара диаметром 5 см. Рядом с ними были установлены большие свинцовые шары. Их диаметр был уже 20 см.

При сближении больших и маленьких шаров наблюдался поворот стержня. Это говорило об их притяжении. По известным массам и расстоянию, а также измеренной силе закручивания удалось достаточно точно узнать, чему равно гравитационное постоянное.

А началось все со свободного падения тел

Если поместить в пустоту тела разной массы, то они упадут одновременно. При условии их падения с одинаковой высоты и его начала в один и тот же момент времени. Удалось рассчитать ускорение, с которым все тела падают на Землю. Оно оказалось приблизительно равно 9,8 м/с 2 .

Ученые установили, что сила, с которой все притягивается к Земле, присутствует всегда. Причем это не зависит от высоты, на которую перемещается тело. Один метр, километр или сотни километров. Как бы далеко ни находилось тело, оно будет притягиваться к Земле. Другой вопрос в том, как ее значение будет зависеть от расстояния?

Именно на этот вопрос нашел ответ английский физик И. Ньютон.

Уменьшение силы притяжения тел с их отдалением

Для начала он выдвинул предположение о том, что сила тяжести убывает. И ее значение находится в обратной зависимости от расстояния, возведенного в квадрат. Причем это расстояние нужно отсчитывать от центра планеты. И провел теоретические расчеты.

Потом этот ученый воспользовался данными астрономов о движении естественного спутника Земли — Луны. Ньютон рассчитал, с каким ускорением она вращается вокруг планеты, и получил те же результаты. Это свидетельствовало о правдивости его рассуждений и позволило сформулировать закон всемирного тяготения. Гравитационная постоянная в его формуле пока отсутствовала. На этом этапе было важно определить зависимость. Что и было сделано. Сила тяжести уменьшается обратно пропорционально расстоянию от центра планеты, возведенному в квадрат.

К закону о всемирном тяготении

Ньютон продолжил размышления. Поскольку Земля притягивает Луну, то и она сама должна притягиваться к Солнцу. Причем сила такого притяжения тоже должна подчиняться описанному им закону. А потом Ньютон распространил его на все тела вселенной. Поэтому и название закона включает слово «всемирное».

Силы всемирного тяготения тел определяются как пропорционально зависящие от произведения масс и обратные квадрату расстояния. Позже, когда был определен коэффициент, формула закона приобрела такой вид:

  • F т = G (m 1 *х m 2) : r 2 .

В ней введены такие обозначения:

Формула гравитационной постоянной вытекает из этого закона:

  • G = (F т Х r 2) : (m 1 х m 2).

Значение гравитационной постоянной

Теперь настал черед конкретных чисел. Поскольку ученые постоянно уточняют это значение, то в разные годы были официально приняты разные числа. К примеру, по данным за 2008 год гравитационная постоянная равна 6,6742 х 10 -11 Нˑм 2 /кг 2 . Прошло три года - и константу пересчитали. Теперь гравитационная постоянная равна 6,6738 х 10 -11 Нˑм 2 /кг 2 . Но для школьников в решении задач допустимо ее округление до такой величины: 6,67 х 10 -11 Нˑм 2 /кг 2 .

В чем физический смысл этого числа?

Если в формулу, которая дана для закона всемирного тяготения, подставить конкретные числа, то получится интересный результат. В частном случае, когда массы тел равны 1 килограмму, а расположены они на расстоянии 1 метра, сила тяготения оказывается равной самому числу, которое известно для гравитационной постоянной.

То есть смысл гравитационной постоянной заключается в том, что она показывает, с какой силой будут притягиваться такие тела на расстоянии одного метра. По числу видно, насколько мала эта сила. Ведь она в десять миллиардов меньше единицы. Ее даже невозможно заметить. Даже при увеличении тел в сотню раз результат существенно не изменится. Он по-прежнему останется гораздо меньше единицы. Поэтому становится понятно, отчего сила притяжения заметна только в тех ситуациях, если хотя бы одно тело имеет огромную массу. Например, планета или звезда.

Как связана гравитационная постоянная с ускорением свободного падения?

Если сравнить две формулы, одна из которых будет для силы тяжести, а другая для закона тяготения Земли, то можно увидеть простую закономерность. Гравитационная постоянная, масса Земли и квадрат расстояния от центра планеты составляют коэффициент, который равен ускорению свободного падения. Если записать это формулой, то получится следующее:

  • g = (G х M) : r 2 .

Причем в ней используются такие обозначения:

Кстати, гравитационную постоянную можно найти и из этой формулы:

  • G = (g х r 2) : M.

Если требуется узнать ускорение свободного падения на некоторой высоте над поверхностью планеты, то пригодится такая формула:

  • g = (G х M) : (r + н) 2 , где н — высота над поверхностью Земли.

Задачи, в которых требуется знание гравитационной постоянной

Задача первая

Условие. Чему равно ускорение свободного падения на одной из планет Солнечной системы, например, на Марсе? Известно, что его масса 6,23·10 23 кг, а радиус планеты 3,38·10 6 м.

Решение . Нужно воспользоваться той формулой, которая была записана для Земли. Только подставить в нее значения, данные в задаче. Получится, что ускорение свободного падения будет равно произведению 6,67 х 10 -11 и 6,23 х 10 23 , которое потом нужно разделить на квадрат 3,38·10 6 . В числителе получается значение 41,55 х 10 12 . А в знаменателе будет 11,42 х 10 12 . Степени сократятся, поэтому для ответа достаточно только узнать частное двух чисел.

Ответ : 3,64 м/с 2 .

Задача вторая

Условие. Что нужно сделать с телами, чтобы уменьшить их силу притяжения в 100 раз?

Решение . Поскольку массу тел изменять нельзя, то сила будет уменьшаться за счет удаления их друг от друга. Сотня получается от возведения в квадрат 10. Значит, расстояние между ними должно стать в 10 раз больше.

Ответ : отдалить их на расстояние, превышающее изначальное в 10 раз.

Гравитационная постоянная или иначе – постоянная Ньютона – одна из основных констант, используемых в астрофизике. Фундаментальная физическая постоянная определяет силу гравитационного взаимодействия. Как известно, силу, с которой каждое из двух тел, взаимодействующих посредством , притягивается можно высчитать из современной формы записи закона всемирного тяготения Ньютона:

  • m 1 и m 2 — тела, взаимодействующие посредством гравитации
  • F 1 и F 2 – векторы силы гравитационного притяжения, направленные к противоположному телу
  • r – расстояние между телами
  • G – гравитационная постоянная

Данный коэффициент пропорциональности равен модулю силы тяготения первого тела, которая действует на точечное второе тело единичной массы, при единичном расстоянии между этими телами.

G = 6,67408(31)·10 −11 м 3 ·с −2 ·кг −1 , или Н·м²·кг −2 .

Очевидно, что данная формула широко применима в области астрофизики и позволяет рассчитать гравитационное возмущение двух массивных космических тел, для определения дальнейшего их поведения.

Работы Ньютона

Примечательно, что в трудах Ньютона (1684-1686) гравитационная постоянная в явном виде отсутствовала, как и в записях других ученых аж до конца XVIII-го века.

Исаак Ньютон (1643 — 1727)

Ранее использовался так называемый гравитационный параметр, который равнялся произведению гравитационной постоянной на массу тела. Нахождение такого параметра в то время было более доступно, поэтому на сегодняшний день значение гравитационного параметра различных космических тел (в основном Солнечной системы) более точно известно, нежели порознь значение гравитационной постоянной и массы тела.

µ = GM

Здесь: µ — гравитационный параметр, G – гравитационная постоянная, а M — масса объекта.

Размерность гравитационного параметра — м 3 с −2 .

Следует отметить тот факт, что значение гравитационной постоянной несколько варьируется даже до сегодняшнего дня, а чистое значение масс космических тел в то время было определить довольно сложно, поэтому гравитационный параметр нашел более широкое применение.

Эксперимент Кавендиша

Эксперимент по определению точного значения гравитационной постоянной впервые предложил английский естествоиспытатель Джон Мичелл, который сконструировал крутильные весы. Однако, не успев провести эксперимент, в 1793-м году Джон Мичелл умер, а его установка перешла в руки Генри Кавендишу – британскому физику. Генри Кавендиш улучшил полученное устройство и провел опыты, результаты которых были опубликованы в 1798-м году в научном журнале под названием «Философские труды Королевского общества».

Генри Кавендиш (1731 — 1810)

Установка для проведения эксперимента состояла из нескольких элементов. Прежде всего она включала 1,8-метровое коромысло, к концам которого крепились свинцовые шарики с массой 775 г и диаметром 5 см. Коромысло было подвешено на медной 1-метровой нити. Несколько выше крепления нити, ровно над ее осью вращения устанавливалась еще одна поворотная штанга, к концам которой жестко крепились два шара массой 49,5 кг и диаметром 20 см. Центры всех четырех шаров должны были лежать в одной плоскости. В результате гравитационного взаимодействия притяжение малых шаров к большим должно быть заметно. При таком притяжении нить коромысла закручивается до некоторого момента, и ее сила упругости должна равняться силе тяготения шаров. Генри Кавендиш измерял силу тяготения посредством измерения угла отклонения плеча коромысла.

Более наглядное описание эксперимента доступно в видео ниже:

Для получения точного значения константы Кавендишу пришлось прибегнуть к ряду мер, снижающих влияние сторонних физических факторов на точность эксперимента. В действительности Генри Кавендиша проводил эксперимент не для того, чтобы выяснить значение гравитационной постоянной, а для расчета средней плотности Земли. Для этого он сравнивал колебания тела, вызванные гравитационным возмущением шара известной массы, и колебания, вызванные тяготением Земли. Он достаточно точно вычислил значение плотности Земли – 5,47 г/см 3 (сегодня более точные расчеты дают 5,52 г/см 3). Согласно различным источникам, значение гравитационной постоянной, высчитанное из гравитационного параметра с учетом плотности Земли, полученной Кавердишем, составило G=6,754·10 −11 м³/(кг·с²), G = 6,71·10 −11 м³/(кг·с²) или G = (6,6 ± 0,04)·10 −11 м³/(кг·с²). До сих пор неизвестно, кто впервые получил численное значение постоянной Ньютона из работ Генри Кавердиша.

Измерение гравитационной постоянной

Наиболее раннее упоминание гравитационной постоянной, как отдельной константы, определяющей гравитационное взаимодействие, найдено в «Трактате по механике», написанном в 1811-м году французским физиком и математиком — Симеоном Дени Пуассоном.

Измерение гравитационной постоянной проводится различными группами ученых и по сей день. При этом, несмотря на обилие доступных исследователям технологий, результаты экспериментов дают различные значения данной константы. Из этого можно было бы сделать вывод, что, возможно, гравитационная постоянная на самом деле непостоянная, а способна менять свое значение, с течением времени или от места к месту. Однако, если значения константы по результатам экспериментов разнятся, то неизменность этих значений в рамках этих экспериментов уже проверена с точностью до 10 -17 . Кроме того, согласно астрономическим данным постоянная G не изменилась в значительной степени за несколько последних сотен миллионов лет. Если постоянная Ньютона и способна меняться, то ее изменение не превысило б отклонение на число 10 -11 – 10 -12 в год.

Примечательно, что летом 2014-го года совместно группа итальянских и нидерландских физиков провели эксперимент по измерению гравитационной постоянной совсем иного вида. В эксперименте использовались атомные интерферометры, которые позволяют отследить влияние земной гравитации на атомы. Значение константы, полученное таким образом, имеет погрешность 0,015% и равняется G = 6.67191(99) × 10 −11 м 3 ·с −2 ·кг −1 .

В теории тяготения Ньютона, так и в теории относительности Эйнштейна гравитационная постоянная (G ) является универсальной константой природы, неизменяющаяся в пространстве и времени, независящая от физических и химических свойств среды и гравитирующих масс.

В первоначальном виде в формуле Ньютона коэффициент G отсутствовал. Как указывает источник : «Гравитационная постоянная впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер. Возможно, впервые это было сделано французским физиком С.Д. Пуассоном в «Трактате по механике» (1809), по крайней мере, никаких более ранних работ, в которых фигурировала бы гравитационная постоянная историками не выявлено».

Введение коэффициента G было вызвано двумя причинами: необходимостью установить правильную размерность и согласовать силы гравитации с реальными данными. Но присутствие данного коэффициента в законе всемирного тяготения по-прежнему не проливало свет на физику процесса взаимного притяжения, за что и критиковали Ньютона его современники.

Ньютона обвиняли по одной серьезной причине: если тела притягиваются между собой, то они должны тратить на это энергию, но из теории не видно, откуда энергия берется, как она расходуется и из каких источников пополняется. Как отмечают некоторые исследователи: открытие данного закона произошло после введенного Декартом принципа сохранения количества движения, но из теории Ньютона следовало, что притяжение есть свойство, внутренне присущее взаимодействующим массам тел, которые расходуют энергию без пополнения и меньше ее не становится! Это какой-то неисчерпаемый источник гравитационной энергии!

Лейбниц называл принцип тяготения Ньютона «невещественной и необъяснимой силой». Предположение о силе притяжения в совершенной пустоте было охарактеризовано Бернулли, как «возмутительное»; и принцип «actio in distans» (действия на расстоянии) не встретил тогда особой благосклонности нежели сейчас.

Наверное, не на пустом месте физики в штыки встретили формулу Ньютона, в ней действительно не отражена энергия для гравитационного взаимодействия. Почему на разных планетах разное притяжение, причем G для всех тел на Земле и в Космосе постоянная? Может G зависит от массы тел, но в чистом виде масса не обладает никакой гравитацией.

Учитывая тот факт, что в каждом конкретном случае взаимодействие (притяжение) тел происходит с разной силой (усилием), то эта сила должна зависеть от энергии гравитирующих масс. В связи с изложенным, в формуле Ньютона должен присутствовать энергетический коэффициент, отвечающий за энергию притягивающихся масс. Более правильным утверждением в гравитационном притяжении тел следовало бы говорить не о взаимодействии масс, а взаимодействии энергий, заключенных в этих массах. То есть энергия, имеет материальный носитель, без которого она не может существовать.

Поскольку, энергонасыщенность тел связана с их теплотой, (температурой), то коэффициент должен отражать это соответствие, т.к. теплота порождает гравитацию !

Еще один аргумент по поводу не постоянства G. Приведу цитату из ретро учебника по физике: «Вообще соотношение Е=mc 2 показывает, что масса любого тела пропорциональна его полной энергии. Поэтому всякое изменение энергии тела сопровождается одновременным изменением его массы. Так, например, если какое-либо тело нагревается, то его масса увеличивается» .

Если масса двух нагретых тел увеличивается, то в соответствии с законом всемирного тяготения , и сила их взаимного притяжения тоже должна увеличиваться. Но здесь возникает серьезная проблема. При повышении температуры, стремящейся к бесконечности, массы и сила между гравитирующими телами также будут стремиться к бесконечности. Если мы будем утверждать, что температура бесконечна, а сейчас иногда такие вольности допускаются, то гравитация между двумя телами тоже будет бесконечна, в результате тела при нагревании должны сжиматься, а не расширяться! Но природа, как видите, до абсурда не доходит!

Как обойти эту трудность? Тривиально – необходимо найти максимальную температуру вещества в природе. Вопрос: как ее найти?

Температура конечна

Полагаю, то огромное количество лабораторных измерений гравитационной постоянной, проводились и проводятся при комнатной температуре, равной: Θ=293 К (20 0 С) или близкой к этой температуре, т.к. сам инструмент – крутильные весы Кавендиша, требует очень тонкого с ним обращения (рис.2). При измерениях должны быть исключены всякие помехи, особенно вибрация и температурные изменения. Измерения должны проводиться в вакууме с высокой точностью, этого требует очень малая величина измеряемой величины.

Для того чтобы «Закон всемирного тяготения» был универсальным и всемирным, необходимо связать его с термодинамической шкалой температур. Сделать это нам помогут расчеты и графики, которые представлены ниже.

Возьмем декартову систему координат ОХ – ОУ. В этих координатах построим начальную функцию G=ƒ(Θ ).

На оси абсцисс отложим температуру, начиная от нуля градусов Кельвина. На оси ординат отложим значения коэффициента G, учитывая, что его значения должны укладываться в интервале от нуля до единицы.

Отметим первую реперную точку (А), эта точка с координатами: х=293,15 К (20⁰С); у=6,67408·10 -11 Нм 2 /кг 2 (G). Соединим эту точку с началом координат и получим график зависимости G=ƒ(Θ ), (рис. 3)

Рис. 3

Экстраполируем данный график, продлим прямую до пересечения со значением ординаты, равной единице, у=1. При построении графика возникли технические трудности. Для того чтобы построить начальную часть графика потребовалось сильно увеличить масштаб, т. к. параметр G имеет очень малую величину. График имеет малый угол подъема, поэтому, чтобы уложить его на один лист, прибегнем к логарифмической шкале оси х (рис.4 ).

Рис. 4

А теперь, внимание!

Пересечение функции графика с ординатой G=1 , дает вторую реперную точку (В). Из этой точки опустим перпендикуляр на ось абсцисс, на которой получим значение координаты х=4,39·10 12 К .

Что это за величина и что она означает? По условию построения – это температура. Проекция точки (В) на ось «х» отражает – максимальную возможную температуру вещества в природе!

Для удобства восприятия представим этот же график в двойных логарифмических координатах (рис.5 ).

Коэффициент G не может иметь значения больше единицы по определению. Данная точка замкнула абсолютную термодинамическую шкалу температуры, начало которой было положено лордом Кельвином в 1848 году.

Из графика видно, что коэффициент G пропорционален температуре тела. Поэтому, постоянная гравитации – есть величина переменная, и в законе всемирного тяготения (1) должна определяться отношением:

G E – универсальный коэффициент (Universal coefficient UC), чтобы не путать с G, запишем его с индексом E (Еergy – энергия). Если температуры взаимодействующих тел разные, то берется их среднее значение.

Θ 1 – температура первого тела

Θ 2 – температура второго тела.

Θ max – максимально возможная температура вещества в природе.

В таком написании коэффициент G E не имеет размерности, что и утверждает его как коэффициент пропорциональности и универсальности.

Подставим G E в выражение (1) и запишем закон всемирного тяготения в общем виде:

Только благодаря энергии, заключенной массах происходит их взаимное притяжение. Энергия – это свойство материального мира совершать работу.

Только благодаря потере энергии на притяжение, осуществляется взаимодействие между космическими телами. Потерю энергии можно отождествить с охлаждением.

Всякое тело (вещество) охлаждаясь, теряет энергию и за счет этого, как ни странно, притягивается к другим телам. Физическая природа тяготения тел заключается в стремлении к наиболее устойчивому состоянию с наименьшей внутренней энергией – это естественное состояние природы.

Формула Ньютона (4) приняла системный вид. Это весьма важно для расчетов космических полетов искусственных спутников и межпланетных станций, а также позволит более точно вычислить, прежде всего, массу Солнца. Произведение G на M известно для тех планет, движение спутников вокруг которых измерялось с высокой точностью. Из движения самих планет вокруг Солнца можно вычислить G и массу Солнца. Погрешности масс Земли и Солнца определяются погрешностью G .

Новый коэффициент позволит, наконец, понять и объяснить, почему траектории орбит первых спутников (пионеров) так далеко не соответствовали расчетным. При запуске спутников не учитывалась температура вылетающих газов. Расчеты показывали меньшую тягу ракеты, а спутники поднимались на более высокую орбиту, например, орбита Explorer-1 оказалась выше расчетной на 360 км. Фон Браун ушел из жизни, так и не поняв этот феномен.

До сего времени постоянная гравитации не имела физического смысла, это был всего лишь вспомогательный коэффициент в законе всемирного тяготения, служащий для связки размерностей. Существующее числовое значение этой константы превращало закон не во всемирный, а в частный, для одного значения температуры!

Гравитационная постоянная – величина переменная. Скажу больше, гравитационная постоянная даже в пределах земного тяготения величина не постоянная, т.к. в гравитационном притяжении участвуют не массы тел, а энергии, заключенные в измеряемых телах. Вот по этой причине не удается достичь высокой точности измерений гравитационной постоянной.

Закон Всемирного Тяготения

Закон Всемирного Тяготения Ньютона и универсальный коэффициент (G E =UC).

Поскольку данный коэффициент безразмерен, формула всемирного тяготения получила размерность dim кг 2 /м 2 – это внесистемная единица, которая возникла вследствие использования масс тел. С размерностью мы пришли к первоначальному виду формулы, которая была обусловлена еще Ньютоном.

Поскольку формула (4) отождествляет силу притяжения, которая в системе СИ измеряется в Ньютонах, то можно воспользоваться размерным коэффициентом (К), как в законе Кулона.

Где К – коэффициент, равный 1. Чтобы привести размерность в СИ, можно использовать ту же размерность, что G , т.е. К= m 3 kg -1 s -2 .

Эксперименты свидетельствуют: тяготение порождается не массой (веществом), тяготение осуществляется с помощью энергий, заключенных в этих массах! Ускорение тел в гравитационном поле не зависят от их массы, поэтому все тела падают на землю с одинаковым ускорением. С одной стороны, ускорение тел пропорционально действующей на них силе и, следовательно, пропорционально их гравитационной массе. Тогда по логике рассуждений формула закона всемирного тяготения должна выглядеть следующим образом:

Где Е 1 и Е 2 – энергия, заключенная в массах взаимодействующих тел.

Поскольку в расчетах весьма трудно определить энергию тел, то оставим в формуле Ньютона (4) массы, с заменой постоянной G на энергетический коэффициент G E .

Максимальную температуру более точно можно вычислить математически из соотношения:

Запишем данное соотношение в числовом виде, учитывая, что (G max =1):

Отсюда: Θ max =4,392365689353438·10 12 К (8)

Θ max –это максимально возможная температура вещества в природе, выше которой, значение невозможно!

Сразу хочу отметить, что это далеко не абстрактная цифра, она говорит о том, что в физической природе все конечно! Физика описывает мир исходя из основополагающих представлений о конечной делимости, конечной скорости света, соответственно, и температура должна быть конечна!

Θ max 4,4 триллиона градусов (4.4 тераКельвинов). Трудно представить, по нашим земным меркам (ощущениям) такую высокую температуру, но ее конечное значение ставит запрет на спекуляции с ее бесконечностью. Такое утверждение приводит нас к заключению, что гравитация также не может быть бесконечной, соотношение G E =Θ/Θ max – все ставит на свои места.

Другое дело, если числитель (3) будет равен нулю (абсолютному нулю) термодинамической шкалы температур, тогда сила F в формуле (5) будет равна нулю. Притяжение между телами должно прекратиться, тела и предметы начнут рассыпаться на составляющие их частицы, молекулы и атомы.

Продолжение в следующей статье...