Идеальный газ. Уравнение состояния идеального газа. Изопроцессы. Закон Клапейрона-Менделеева: формула, формулировка, использование

Уравнение состояния идеального газа (иногда уравнение Клапейрона или уравнение Менделеева - Клапейрона ) - формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид:

Так как , где-количество вещества, а , где- масса,-молярная масса, уравнение состояния можно записать:

Эта форма записи носит имя уравнения (закона) Менделеева - Клапейрона.

В случае постоянной массы газа уравнение можно записать в виде:

Последнее уравнение называют объединённым газовым законом . Из него получаются законы Бойля - Мариотта, Шарля и Гей-Люссака:

- закон Бойля - Мариотта .

- Закон Гей-Люссака .

- закон Шарля (второй закон Гей-Люссака, 1808 г.).А в форме пропорции этот закон удобен для расчёта перевода газа из одного состояния в другое. С точки зрения химика этот закон может звучать несколько иначе: Объёмы вступающих в реакцию газов при одинаковых условиях (температуре, давлении) относятся друг к другу и к объёмам образующихся газообразных соединений как простые целые числа. Например, 1 объёмводородасоединяется с 1 объёмом хлора, при этом образуются 2 объёма хлороводорода:

1 Объём азота соединяется с 3 объёмами водорода с образованием 2 объёмов аммиака:

- закон Бойля - Мариотта . Закон Бойля - Мариотта назван в честь ирландского физика, химика и философа Роберта Бойля (1627-1691), открывшего его в 1662 г., а также в честь французского физика Эдма Мариотта (1620-1684), который открыл этот закон независимо от Бойля в 1677 году. В некоторых случаях (в газовой динамике) уравнение состояния идеального газа удобно записывать в форме

где -показатель адиабаты, - внутренняя энергия единицы массы вещества.Эмиль Амага обнаружил, что при высоких давлениях поведение газов отклоняется от закона Бойля - Мариотта. И это обстоятельство может быть прояснено на основании молекулярных представлений.

С одной стороны, в сильно сжатых газах размеры самих молекул являются сравнимыми с расстояниями между молекулами. Таким образом, свободное пространство, в котором движутся молекулы, меньше, чем полный объём газа. Это обстоятельство увеличивает число ударов молекул в стенку, так как благодаря ему сокращается расстояние, которое должна пролететь молекула, чтобы достигнуть стенки. С другой стороны, в сильно сжатом и, следовательно, более плотном газе молекулы заметно притягиваются к другим молекулам гораздо большую часть времени, чем молекулы в разреженном газе. Это, наоборот, уменьшает число ударов молекул в стенку, так как при наличии притяжения к другим молекулам молекулы газа движутся по направлению к стенке с меньшей скоростью, чем при отсутствии притяжения. При не слишком больших давлениях более существенным является второе обстоятельство и произведение немного уменьшается. При очень высоких давлениях большую роль играет первое обстоятельство и произведениеувеличивается.

5. Основное уравнение молекулярно-кинетической теории идеальных газов

Для вывода основного уравнения молеку­лярно-кинетической теории рассмотрим одноатомный идеальный газ. Предполо­жим, что молекулы газа движутся хаоти­чески, число взаимных столкновений меж­ду молекулами газа пренебрежимо мало по сравнению с числом ударов о стенки сосуда, а соударения молекул со стенками сосуда абсолютно упругие. Выделим на стенке сосуда некоторую элементарную площадку DS и вычислим давле­ние, оказываемое на эту площадку. При каждом соударении молекула, движущая­ся перпендикулярно площадке, передает ей импульс m 0 v-(-m 0 v)=2m 0 v, где т 0 - масса молекулы, v - ее скорость.

За время Dt площадки DS достигнут только те молекулы, которые заключены в объеме цилиндра с основанием DS и высотой v Dt .Число этих молекул равно n DSv Dt (n- концентрация молекул).

Необходимо, однако, учитывать, что реально молекулы движутся к площадке

DS под разными углами и имеют различ­ные скорости, причем скорость молекул при каждом соударении меняется. Для упрощения расчетов хаотическое движе­ние молекул заменяют движением вдоль трех взаимно перпендикулярных направ­лений, так что в любой момент времени вдоль каждого из них движется 1 / 3 моле­кул, причем половина молекул (1 / 6) дви­жется вдоль данного направления в одну сторону, половина - в противоположную. Тогда число ударов молекул, движущихся в заданном направлении, о площадку DS будет 1 / 6 nDSvDt. При столкновении с пло­щадкой эти молекулы передадут ей им­пульс

DР = 2m 0 v 1 / 6 n DSv Dt = 1 / 3 nm 0 v 2 DS Dt .

Тогда давление газа, оказываемое им на стенку сосуда,

p =DP/(DtDS)= 1 / 3 nm 0 v 2 . (3.1)

Если газ в объеме V содержит N молекул,

движущихся со скоростями v 1 , v 2 , ..., v N , то

целесообразно рассматривать среднюю квадратичную скорость

характеризующую всю совокупность моле­кул газа.

Уравнение (3.1) с учетом (3.2) при­мет вид

р = 1 / 3 пт 0 2 . (3.3)

Выражение (3.3) называется основ­ным уравнением молекулярно-кинетической теории идеальных газов. Точный рас­чет с учетом движения молекул по все-

возможным направлениям дает ту же формулу.

Учитывая, что n = N/V, получим

где Е - суммарная кинетическая энергия поступательного движения всех молекул газа.

Так как масса газа m =Nm 0 , то урав­нение (3.4) можно переписать в виде

pV = 1 / 3 m 2 .

Для одного моля газа т = М (М - моляр­ная масса), поэтому

pV m = 1 / 3 M 2 ,

где V m - молярный объем. С другой сто­роны, по уравнению Клапейрона - Мен­делеева, pV m =RT. Таким образом,

RT= 1 / 3 М 2 , откуда

Так как М = m 0 N A , где m 0 -масса од­ной молекулы, а N А - постоянная Авогад­ро, то из уравнения (3.6) следует, что

где k = R/N A -постоянная Больцмана. Отсюда найдем, что при комнатной темпе­ратуре молекулы кислорода имеют сред­нюю квадратичную скорость 480 м/с, во­дорода - 1900 м/с. При температуре жид­кого гелия те же скорости будут соответ­ственно 40 и 160 м/с.

Средняя кинетическая энергия посту­пательного движения одной молекулы иде­ального газа

) 2 /2 = 3 / 2 kT(43.8)

(использовали формулы (3.5) и (3.7)) пропорциональна термодинамической тем­пературе и зависит только от нее. Из этого уравнения следует, что при T=0 =0,т. е. при 0 К прекращается поступательное движение молекул газа, а следовательно, его давление равно нулю. Таким образом, термодинамическая температура является мерой средней кинетической энергии по­ступательного движения молекул идеаль­ного газа и формула (3.8) раскрывает молекулярно-кинетическое толкование температуры.

Подробности Категория: Молекулярно-кинетическая теория Опубликовано 05.11.2014 07:28 Просмотров: 13238

Газ - одно из четырёх агрегатных состояний, в которых может находиться вещество.

Частицы, из которых состоит газ, очень подвижны. Они практически свободно и хаотично движутся, периодически сталкиваясь друг с другом подобно биллиардным шарам. Такое столкновение называют упругим столкновением . Во время столкновения они резко изменяют характер своего движения.

Так как в газообразных веществах расстояние между молекулами, атомами и ионами намного превышает их размеры, то между собой эти частицы взаимодействую очень слабо, и их потенциальная энергия взаимодействия очень мала по сравнению с кинетической.

Связи между молекулами в реальном газе сложные. Поэтому также довольно сложно описывать зависимость его температуры, давления, объёма от свойств самих молекул, их количества, скорости их движения. Но задача значительно упрощается, если вместо реального газа рассматривать его математическую модель - идеальный газ .

Предполагается, что в модели идеального газа между молекулами нет сил притяжения и отталкивания. Все они движутся независимо друг от друга. И к каждой из них можно применить законы классической механики Ньютона. А между собой они взаимодействуют только во время упругих столкновений. Время самого столкновения очень мало по сравнению со временем между столкновениями.

Классический идеальный газ

Попробуем представить молекулы идеального газа маленькими шариками, находящимися в огромном кубе на большом расстоянии друг от друга. Из-за этого расстояния они не могут друг с другом взаимодействовать. Следовательно, их потенциальная энергия равна нулю. Но эти шарики двигаются с огромной скоростью. А значит, обладают кинетической энергией. Когда они сталкиваются друг с другом и со стенками куба, они ведут себя как мячики, то есть упруго отскакивают. При этом они меняют направление своего движения, но не меняют скорости. Примерно так выглядит движение молекул в идеальном газе.

  1. Потенциальная энергия взаимодействия молекул идеального газа настолько мала, что ею пренебрегают по сравнению с кинетической энергией.
  2. Молекулы в идеальном газе также имеют настолько маленькие размеры, что их можно считать материальными точками. А это означает, что и их суммарный объём также ничтожно мал по сравнению с объёмом сосуда, в котором находится газ. И этим объёмом также пренебрегают.
  3. Среднее время между столкновениями молекул намного превышает время их взаимодействия при соударении. Поэтому временем взаимодействия пренебрегают также.

Газ всегда принимает форму сосуда, в котором находится. Движущиеся частицы сталкиваются друг с другом и со стенками сосуда. Во время удара каждая молекула действует на стенку с некоторой силой в течение очень короткого промежутка времени. Так возникает давление . Суммарное давление газа складывается из давлений всех молекул.

Уравнение состояния идеального газа

Состояние идеального газа характеризуют три параметра: давление , объём и температура . Зависимость между ними описывается уравнением:

где р - давление,

V M - молярный объём,

R - универсальная газовая постоянная,

T - абсолютная температура (градусы Кельвина).

Так как V M = V / n , где V - объём, n - количество вещества, а n = m/M , то

где m - масса газа, М - молярная масса. Это уравнение называется уравнением Менделеева-Клайперона .

При постоянной массе уравнение приобретает вид:

Это уравнение называют объединённым газовым законом .

Используя закон Менделеева-Клайперона, можно определить один из параметров газа, если известны два других.

Изопроцессы

С помощью уравнения объединённого газового закона можно исследовать процессы, в которых масса газа и один из важнейших параметров - давление, температура или объём - остаются постоянными. В физике такие процессы называются изопроцессами .

Из объединённого газового закона вытекают другие важнейшие газовые законы: закон Бойля-Мариотта , закон Гей-Люссака , закон Шарля, или второй закон Гей-Люссака.

Изотермический процесс

Процесс, в котором изменяются давление или объём, но температура остаётся постоянной, называется изотермическим процессом .

При изотермическом процессе T = const, m = const .

Поведение газа в изотермическом процессе описывает закон Бойля-Мариотта . Этот закон открыли экспериментальным путём английский физик Роберт Бойль в 1662 г. и французский физик Эдм Мариотт в 1679 г. Причём сделали они это независимо друг от друга. Закон Бойля-Мариотта формулируется следующим образом: В идеальном газе при постоянной температуре произведение давления газа на его объём также постоянно .

Уравнение Бойля-Мариотта можно вывести из объединённого газового закона. Подставив в формулу Т = const , получаем

p · V = const

Это и есть закон Бойля-Мариотта . Из формулы видно, что давление газа при постоянной температуре обратно пропорционально его объёму . Чем выше давление, тем меньше объём, и наоборот.

Как объяснить это явление? Почему же при увеличении объёма газа его давление становится меньше?

Так как температура газа не меняется, то не меняется и частота ударов молекул о стенки сосуда. Если увеличивается объём, то концентрация молекул становится меньше. Следовательно, на единицу площади придётся меньшее количество молекул, которые соударяются со стенками в единицу времени. Давление падает. При уменьшении объёма число соударений, наоборот, возрастает. Соответственно растёт и давление.

Графически изотермический процесс отображают на плоскости кривой, которую называют изотермой . Она имеет форму гиперболы .

Каждому значению температуры соответствует своя изотерма. Чем выше температура, тем выше расположена соответсвующая ей изотерма.

Изобарный процесс

Процессы изменения температуры и объёма газа при постоянном давлении, называются изобарными . Для этого процесса m = const, P = const.

Зависимость объёма газа от его температуры при неизменяющемся давлении также была установлена экспериментальным путём французским химиком и физиком Жозефом Луи Гей-Люссаком , опубликовавшем его в 1802 г. Поэтому её называют законом Гей-Люссака : " Пр и постоянном давлении отношение объёма постоянной массы газа к его абсолютной температуре является постоянной величиной".

При Р = const уравнение объединённого газового закона превращается в уравнение Гей-Люссака .

Пример изобарного процесса - газ, находящийся внутри цилиндра, в котором перемещается поршень. При повышении температуры растёт частота ударов молекул о стенки. Увеличивается давление, и поршень приподнимается. В итоге увеличивается объём, занимаемый газом в цилиндре.

Графически изобарный процесс отображается прямой линией, которая называется изобарой .

Чем больше давление в газе, тем ниже расположена на графике соответствующая изобара.

Изохорный процесс

Изохорным, или изохорическим, называют процесс изменения давления и температуры идеального газа при постоянном объёме.

Для изохорного процесса m = const, V = const.

Представить такой процесс очень просто. Он происходит в сосуде фиксированного объёма. Например, в цилиндре, поршень в котором не двигается, а жёстко закреплён.

Изохорный процесс описывается законом Шарля : «Для данной массы газа при постоянном объёме его давление пропорционально температуре ». Французский изобретатель и учёный Жак Александр Сезар Шарль установил эту зависимость с помощью экспериментов в 1787 г. В 1802 г. её уточнил Гей-Люссак. Поэтому этот закон иногда называют вторым законом Гей-Люссака.

При V = const из уравнения объединённого газового закона получаем уравнение закона Шарля, или второго закона Гей-Люссака .

При постоянном объёме давление газа увеличивается, если увеличивается его температура .

На графиках изохорный процесс отображается линией, которая называется изохорой .

Чем больше объём занимаемый газом, тем ниже расположена изохора, соответствующая этому объёму.

В реальности ни один параметр газа невозможно поддерживать неизменным. Это возможно сделать лишь в лабораторных условиях.

Конечно, в природе идеального газа не существует. Но в реальных разреженных газах при очень низкой температуре и давлении не выше 200 атмосфер расстояние между молекулами намного превышает их размеры. Поэтому их свойства приближаются к свойствам идеального газа.

В этом разделе мы знакомимся с уравнением состояния идеального газа.

Эксперименты показали, что при условиях не слишком отличающихся от нормальных (температура порядка сотен кельвинов, давление порядка одной атмосферы) свойства реальных газов близки к свойствам идеального газа.

Пример. На примере водяного пара покажем, что при обычных условиях свойства реальных газов близки к свойствам идеального. По таблице Менделеева можно определить массу моля Н 2 0 :

Плотность воды в жидком состоянии

Отсюда можно найти объем одного моля воды:

Один моль любого вещества содержит одно и то же число молекул (число Авогадро):

Получаем отсюда объем V 1 , приходящийся на одну молекулу воды:

В конденсированном состоянии молекулы располагаются вплотную друг к другу, то есть в сущности V 1 есть объем молекулы воды, откуда следует оценка ее линейного размера (диаметра):

С другой стороны, известно, что объем V m одного моля любого газа при нормальных условиях равен

Поэтому на одну молекулу водяного пара приходится объем

Это значит, что газ можно нарезать мысленно на кубики с длиной ребра

и в каждом таком кубике окажется одна молекула. Иными словами, L - среднее расстояние между молекулами водяного пара. Мы видим, что L на порядок превосходит размер D молекулы. Аналогичные оценки получаются и для других газов, так что с хорошей точностью можно считать, что молекулы не взаимодействуют друг с другом, и при нормальных условиях газ идеален.

Как уже говорилось, уравнение состояния, имеющее вид, позволяет выразить один термодинамический параметр через два других. Конкретный вид этого уравнения зависит от того, какое вещество и в каком агрегатном состоянии рассматривается. Уравнение состояния идеального газа объединяет ряд экспериментально установленных частных газовых законов. Каждый из них описывает поведение газа при условии, что изменяются лишь два параметра.

1. Закон Бойля - Мариотта . Описывает процесс в идеальном газе при постоянной температуре.

Изотермический процесс - это термодинамический процесс, протекающий при постоянной температуре.

Закон Бойля - Мариотта гласит:

Для данной массы газа при постоянной температуре Т = const произведение давления газа на занимаемый им объем является постоянной величиной

Графически изотермический процесс в различных координатах изображен на рис. 1.7.

Рис.1.7. Изотермический процесс в идеальном газе: 1 - в координатах p V ; 2 - в координатах p - T ; 3 - в координатах T V

Показанные на рис. 1.7-1 кривые представляют собой гиперболы

располагающиеся тем выше, чем выше температура газа.

Экспериментальное исследование закона Бойля - Мариотта можно выполнить с помощью установки, показанной на рис. 1.8. В цилиндре, находящемся при постоянной температуре (что видно из показаний термометра), при перемещении поршня изменяется объем газа. Давление газа измеряется с помощью манометра. Результаты измерений давления и объема газа представляются на диаграмме p = p (V ) .

Рис. 1.8. Экспериментальное изучение изотермического процесса в газе

2. Закон Гей-Люссака. Описывает тепловое расширение идеального газа при постоянном давлении.

Закон Гей-Люссака гласит:

Объем данной массы определенного газа при постоянном давлении пропорционален его абсолютной температуре

Графически изобарный процесс в различных координатах показан на рис. 1.9.

Рис. 1.9. Изобарный процесс в газе: 1 - в координатах p – V; 2 - в координатах V – T; 3 - в координатах P – T

Экспериментальное изучение закона Гей-Люссака можно выполнить с помощью установки, показанной на рис. 1.10. В цилиндре газ нагревается с помощью горелки. Давление газа в процессе нагревания остается неизменным, что видно из показаний манометра. Температура газа измеряется с помощью термометра. Результаты измерений давления и температуры газа представляются на диаграмме V = V(Т) .

Рис. 1.10. Экспериментальное изучение изобарного процесса в газе

3. Закон Шарля. Описывает изменение давления идеального газа с ростом температуры при постоянном объеме.

Изохорный процесс - это процесс, протекающий при постоянном объеме.

Закон Шарля гласит:

Давление данной массы определенного газа при постоянном объеме пропорционально термодинамической температуре

Графически изохорный процесс в различных координатах показан на рис. 1.11.

Рис.1.11. Изохорный процесс в газе: 1 - в координатах p – V; 2 - в координатах p – T; 3 - в координатах V – T

Экспериментальное исследование закона Шарля можно выполнить с помощью установки, показанной на рис. 1.12. В цилиндре газ занимает постоянный объем (поршень неподвижен). При нагревании давление газа увеличивается, а при охлаждении уменьшается. Величина давления измеряется с помощью манометра, а температура газа - с помощью термометра. Результаты измерений давления и температуры газа представляются на диаграмме p=p(Т) .

Рис. 1.12. Экспериментальное изучение изохорного процесса в газе

Если объединить рассмотренные частные газовые законы, то получим уравнение состояния идеального газа (для одного моля)

(1.5)

в которое входит универсальная газовая постоянная R = 8,31 Дж/(моль· К). При одних и тех же значениях объема и температуры системы давление газа пропорционально числу молей вещества

Поэтому для произвольной массы газа m уравнение состояния идеального газа (1.6) примет вид

(1.6)

Это уравнение называют уравнением Клапейрона - Менделеева.

Дополнительная информация:

http://www.plib.ru/library/book/14222.html - Яворский Б.М., Детлаф А.А. Справочник по физике, Наука, 1977 г. – стр. 162–166, - сводная таблица свойств всевозможных изопроцессов с идеальным газом;

http://kvant.mirror1.mccme.ru/1990/08/gazovye_zakony_i_mehanicheskoe.htm - журнал Квант, 1990 г. № 8, стр. 73–76, Д. Александров, Газовые законы и механическое равновесие;

http://www.alleng.ru/d/phys/phys62.htm - Тульчинский М.Е. Качественные задачи по физике, Изд. Просвещение, 1972 г.; задачи № 489, 522, 551 на законы идеального газа;

http://marklv.narod.ru/mkt/str4.htm - школьный урок с картинками по модели идеального газа;

http://marklv.narod.ru/mkt/str7.htm - школьный урок с картинками по изопроцессам с идеальным газом.

1. Идеальным газом называется газ, в котором отсутствуют силы межмолекулярного взаимодействия. С достаточной степенью точности газы можно считать идеальными в тех случаях, когда рассматриваются их состояния, далекие от областей фазовых превращений.
2. Для идеальных газов справедливы следующие законы:

а) Закон Бойля - Mаpuomma: при неизменных температуре и массе произведение численных значений давления и объема газа постоянно:
pV = const

Графически этот закон в координатах РV изображается линией, называемой изотермой (рис.1).

б) Закон Гей-Люссака: при постоянном давлении объем данной массы газа прямо пропорционален его абсолютной температуре:
V = V0(1 + at)

где V - объем газа при температуре t, °С; V0 - его объем при 0°С. Величина a называется температурным коэффициентом объемного расширения. Для всех газов a = (1/273°С-1). Следовательно,
V = V0(1 +(1/273)t)

Графически зависимость объема от температуры изображается прямой линией - изобарой (рис. 2). При очень низких температурах (близких к -273°С) закон Гей-Люссака не выполняется, поэтому сплошная линия на графике заменена пунктиром.

в) Закон Шарля: при постоянном объеме давление данной массы газа прямо пропорционально его абсолютной температуре:
p = p0(1+gt)

где р0 - давление газа при температуре t = 273,15 К.
Величина g называется температурным коэффициентом давления. Ее значение не зависит от природы газа; для всех газов = 1/273 °С-1. Таким образом,
p = p0(1 +(1/273)t)

Графическая зависимость давления от температуры изображается прямой линией - изохорой (Рис. 3).

г) Закон Авогадро: при одинаковых давлениях и одинаковых температурах и равных объемах различных идеальных газов содержится одинаковое число молекул; или, что то же самое: при одинаковых давлениях и одинаковых температурах грамм-молекулы различных идеальных газов занимают одинаковые объемы.
Так, например, при нормальных условиях (t = 0°C и p = 1 атм = 760 мм рт. ст.) грамм-молекулы всех идеальных газов занимают объем Vm = 22,414 л.· Число молекул, находящихся в 1 см3 идеального газа при нормальных условиях, называется числом Лошмидта; оно равно 2,687*1019> 1/см3
3. Уравнение состояния идеального газа имеет вид:
pVm = RT

где р, Vm и Т - давление, молярный объем и абсолютная температура газа, а R - универсальная газовая постоянная, численно равная работе, совершаемой 1 молем идеального газа при изобарном нагревании на один градус:
R = 8.31*103 Дж/(кмоль*град)

Для произвольной массы M газа объем составит V = (M/m)*Vm и уравнение состояния имеет вид:
pV = (M/m) RT

Это уравнение называется уравнением Менделеева - Клапейрона.
4. Из уравнения Менделеева - Клапейрона следует, чти число n0 молекул, содержащихся в единице объема идеального газа, равно
n0 = NA/Vm = p*NA /(R*T) = p/(kT)

где k = R/NA = 1/38*1023 Дж/град - постоянная Больцмана, NA - число Авогадро.

Если рассматривать некоторое количество газа, то эмпирически получено, что давление (), объем () и температура () полностью характеризуют эту массу газа как термодинамическую систему, если данный газ можно представить в виде совокупности нейтральных молекул, не имеющих дипольных моментов. В состоянии термодинамического равновесия связаны между собой уравнением состояния.

ОПРЕДЕЛЕНИЕ

Уравнение состояния газа в виде:

(где — газа; — молярная масса газа; Дж/Моль К — универсальная газовая постоянная; температура воздуха в Кельвинах: ) было впервые получено Менделеевым.

Его легко получить из уравнения Клапейpона:

учитывая, что в соответствии с законом Авогадро один моль любого газа при нормальных условиях занимает объем л. При этом получается, что:

Уравнение (1) называют уравнением Менделеева-Клапейpона. Иногда его записывают как:

где — количество вещества (число молей газа).

Уравнение Менделеева-Клапейpона получено на основе установленных эмпирически газовых законов. Так же как и газовые законы, уравнение Менделеева-Клапейpона является приближенным. Для разных газов границы применимости данного уравнения различны. Например, для гелия уравнение (1) справедливо в более широком диапазоне температур, чем для углекислого газа. Абсолютно точным уравнение Менделеева-Клапейpона является для идеального газа. Особенностью которого, является то, что его внутренняя энергия пропорциональна абсолютной температуре и не зависит от объема, который газ занимает.

Примеры решения задач

ПРИМЕР 1

Задание Температуру воздуха в комнате повысили от до Как при таких условиях изменится плотность воздуха в помещении ()? Тепловым расширением стен пренебречь.
Решение Если тепловым расширением стен можно пренебречь, то объем комнаты не изменяется. В том, случае, если воздух нагревается при постоянном объеме давление должно расти с увеличением температуры, при этом его плотность не изменяется. Однако комната не является герметичной, поэтому объем газа (воздуха) в помещении постоянным считать нельзя. Постоянным в нашем случае является давление, которое равно наружному давлению атмосферы. При увеличении температуры уменьшается масса воздуха в комнате, так как газ выходит через щели наружу.

Вычислить плотность воздуха, можно используя уравнение Менделеева-Клапейpона:

Разделим правую и левую части уравнения (1.1) на V, имеем: