Инжекционные газовые горелки низкого и среднего давления. Инжекционные газовые горелки Инжекторная горелка

Газопламенные горелки предназначены для смешения горючего газа или паров горючих жидкостей с кислородом или воздухом и получения устойчивого высокотемпературного пламени. Различные конструкции газопламенных горелок можно классифицировать следующим образом:

а) по способу подачи горючего газа в смесительную камеру: инжекторные и безынжекторные;

б) по расходу горючего газа: микромощности (10-60 дм 3 /ч ацетилена), средней мощности (50-2800 дм 3 /ч ацетилена), большой мощности (2800-7000 дм 3 /ч ацетилена);

в) по назначению: универсальные (для сварки, пайки, наплавки, подогрева, закалки, поверхностной очистки и т. п.); специализированные (только сварка, подогрев, закалка, очистка поверхностей и т. д.);

г) по числу рабочего пламени: однопламенные, многопламенные;

д) по способу применения: для ручных процессов газопламенной обработки, для механизированных процессов.

Наибольшее применение находят инжекторные газопламенные горелки . В горелке этого типа горючая смесь образуется за счет инжектирования (подсоса) горючего газа кислородом, который проходит по центральному отверстию инжектора. Выходя из маленького отверстия инжектора в камеру смешения, кислород расширяется, теряя давление; происходит подсос ацетилена. Устройство такой горелки показано на рис. 41. Разрез инжекторного устройства приведен на рис. 42. Для нормальной работы инжекторной горелки давление поступающего в нее кислорода должно быть 2÷4 кгс/см 2 . Давление же ацетилена может быть значительно ниже - от 0,01 до 0,1 кгс/см 2 (или от 100 до 1000 мм вод. ст.).

Увеличить

Рис. 41. Устройство и принцип работы инжекторной сварочной горелки :

1 - кислородный ниппель, 2 - рукоятка, 3 - кислородная трубка, 4 - корпус, 5 - регулирующий кислородный вентиль, 6 - ниппель наконечника, 7 - мундштук ацетилено-кислородной горелки, 8 - мундштук пропан-бутан-кислородной горелки, 9 - штуцер, 10 - подогреватель, 11 - трубка горючей смеси, 12 - трубка смесительной камеры, 13 - инжектор, 14 - регулирующий вентиль горючего газа, 15 - трубка горючего газа, 16 - ниппель горючего газа; а - канал малого сечения, б - канал смесительной камеры, в - зазор между стенками смесительной камеры и корпусом инжектора, г - боковые отверстия в штуцере; I - сменный наконечник для ацетилено-кислородной горелки, II - сменный наконечник для пропан-бутан-кислородной горелки


Рис. 42. Разрез инжекторного устройства :

1 - смесительная камера, 2 - накидная гайка, 3 - корпус горелки, 4 - инжектор

В безынжекторных горелках (горелках равного давления) ацетилен и кислород поступают в смесительное устройство под одинаковыми давлениями в пределах 0,5÷1,0 кгс/см 2 . Обычно это горелки небольшой мощности, как, например, горелка Г1.

Для ряда процессов газопламенной обработки (нагрев, пайка, сварка пластмасс и т. п.), где не требуется высокой температуры пламени, применяют камерно-вихревые горелки, работающие на пропан-воздушной смеси. В таких горелках вместо мундштука имеется камера сгорания, в которую поступают пропан и воздух. Пропан подается по центральному каналу, а воздух - по многозаходной спирали, что вызывает вихреобразование и смешивание газовой смеси в камере сгорания.

Согласно ГОСТ 1077-69, универсальные однопламенные горелки для ацетилено-кислородной сварки, пайки и подогрева выпускаются четырех типов (табл. 15). Этим же стандартом установлено 12 номеров сменных наконечников с различным расходом ацетилена и кислорода (табл. 16).

15. Типы и основные параметры одноплеменных универсальных ацетилено-кислородных горелок (ГОСТ 1077-69).

Типы Наименование Расход, л/ч Давление на входе в горелку, кгс/см 2 Нормальная комплектовка горелки наконечниками номеров Принцип действия
ацетилена кислорода ацетилена кислорода
наим. наиб. наим. наиб. наим. наиб. наим. наиб.
Г1

Горелка микромощности

5 60 6 65 0,10 1,00 0,1 1,0 000, 00, 0 Безынжекторный
Г2

Горелка малой мощности

25 430 28 440 0,01 0,35 0,5 4,0 0, 1, 2, 3 Инжекторный
Г3

Горелка средней мощности

50 2800 55 3100 0,35 1,0 4,0 То же
Г4

Горелка большой мощности

2800 7000 3100 8000 0,35 1,20 2,0 4,0 8,9 »

16. Расход ацетилена и кислорода для различных номеров наконечников горелок (ГОСТ 1077-69)

Горелка любого типа снабжена рукояткой с запорно-регулировочными вентилями для кислорода и ацетилена и набором сменных наконечников. На маховичках вентилей нанесены: наименование газа (кислород или ацетилен), стрелки, указывающие направление вращения при открывании и закрывании вентилей, буквы О (открыто) и 3 (закрыто).

Накидная гайка и штуцер, служащие для присоединения к рукоятке ниппеля для ацетилена, должны иметь левую резьбу. Кислородный ниппель присоединяется накидной гайкой с правой резьбой.

Ниже приводится краткое описание некоторых марок горелок.

Сегодня мы расскажем, как своими руками сделать простую, надёжную и удобную инжекционную газовую горелку для ковки и литья.

Здравствуйте, читатели и подписчики сайта !

Материалы необходимые для изготовления самодельной инжекционной газовой горелки:

  • *кровельная газовая горелка;
  • два отрезка черной трубы 40х3мм (длина: 40мм, 50мм);
  • один отрезок черной трубы 25х3 (длина: 155мм).

*- очень много людей заморачиваются и делают горелку из кучи сантехнических фитингов и сварочных наконечников, краников. Зачем? Все это продается в магазине в виде кровельной горелке (берите средний размер сопла для нормальной производительности). И нам останется лишь переделать сопло!

Кстати, говоря о сопле. Если вы задаетесь сейчас вопросом, зачем что-то переделывать, когда есть готовые горелки. Как раз которую я и буду переделывать. Так вот ответ прост. И наглядно его я продемонстрировал в видео. При коротком сопле, горелка в закрытом пространстве гореть не будет! Не получится инжекционного процесса подсоса воздуха и пламя потухнет.

Инструмент необходимый для изготовления инжекционной газовой горелки:

  • сварочный аппарат;
  • болгарка.

Все размеры я указал на чертеже и обозначил их в видео**

**- Так же на картинке отобразил АНАЛОГ! Его можно собрать из переходных чугунных сантехнических муфт и трубы. Она так же будет неплохо работать. Для меня ключевую роль сыграла цена! Я купил куски трубы на металлобазе и обошлись они мне в чуть больше чем 50р + расходы на сварку и тп. Цена сопла встала в 50р! муфты же стоят значительно дороже (помните, у меня супербюджетный набор для начинающего!).
Ну вот я и рассказал вам о том, что я использовал и почему я использовал это, а не другое. А наглядное изготовление вы увидите в видео!

p.s. Пламя горелки горит стабильно и очень эффективно. Горение происходит в наружней ее части. Горелка хорошо охлаждается потоком воздуха и остается холодной на все время работы. Нагревается лишь кончик, что только способствует сгоранию газа.
Спасибо за просмотр!

В таких горелках образование газовоздушной смеси происходит путем подсасывания внутрь горелки первичного воздуха за счет энергии струи газа. Это явление называется инжекцией. В зависимости от объема инжектируемого первичного воздуха горелки бывают частичного и полного смешения.

В горелках частичного (неполного) смешения инжектируется только часть необходимого для сгорания воздуха, а остальной воздух поступает в зону горения из окружающего пространства. Такие горелки еще называют атмосферными или факельными. Они наиболее распространены и используются для газовых плит, водонагревателей, секционных котлов, мелких отопительных приборов.

Устройство инжекционной атмосферной горелки показано на рис. 2.6. Основными частями инжекционной горелки являются регулятор первичного воздуха 7, газовое сопло, или форсунка 1, смеситель и коллектор 6.

Рис. 2.6. Инжекционные атмосферные газовые горелки: а - низкого давления; б -для чугунного котла; I- форсунка, 2- инжектор;

3- конфузор; 4- диффузор; 5- отверстия; 6- коллектор; 7- регулятор первичного воздуха

Регулятор первичного воздуха представляет собой вращающийся диск или шайбу и служит для регулирования количества первичного воздуха, поступающего в горелку.

Газовое сопло, или форсунка, служит для придания газовой струе скорости, которая обеспечивает инжекцию необходимого воздуха.

Смеситель горелки состоит из трех частей - инжектора 2, конфузора 3 и диффузора 4. Инжектор служит для подсоса воздуха и создания разрежения. Конфузор служит для выравнивания струи газовоздушной смеси. В диффузоре происходит окончательное перемешивание газовоздушной смеси и повышение его давления за счет снижения скорости. Из диффузора газовоздушная смесь поступает в коллектор 6, который распределяет газовоздушную смесь по отверстиям. Форма коллектора и расположение отверстий зависят от типа горелок и их назначения.

Важными характеристиками инжекционных горелок неполного смешения являются коэффициент инжекции - отношение объемов инжектируемого воздуха и воздуха, необходимого для полного сгорания газа, и кратность инжекции - отношение объема первичного воздуха к расходу газа горелкой.

Достоинством инжекционных горелок является свойство их саморегулирования - поддержание постоянной пропорции между объемами подаваемого в горелку газа и инжектируемого воздуха.

Однако пределы устойчивости инжекционных горелок ограничены возможностями отрыва и проскока пламени. Это значит, что увеличить или уменьшить давление газа в горелке можно только в определенных пределах.

Горелки полного смешения инжектируют весь воздух, необходимый для сжигания газа, что обеспечивается использованием газа повышенных давлений. Наиболее распространенные конструкции горелок полного смешения газа работают в диапазоне давления от 5 кПа до 0,5 МПа.

Горелка типа ИГК (инжекционная горелка конструкции Казанцева) состоит из регулятора первичного воздуха, форсунки, конфузора, смесителя, насадки и пластинчатого стабилизатора.

Регулятор первичного воздуха горелки одновременно выполняет функции глушителя шума, который создается за счет повышенных скоростей движения газовоздушной смеси.

Пластинчатый стабилизатор обеспечивает устойчивую работу горелки без отрыва и проскока пламени в горелку в широком диапазоне нагрузок. Стабилизатор состоит из стальных пластин толщиной 0,5 мм и расстоянием между ними 1,5 мм. Пластины стабилизатора стягиваются между собой стальными стержнями, которые на пути движения газовоздушной смеси создают зону обратных токов горячих продуктов сгорания и непрерывно поджигают газовоздушную смесь. Такое устройство стабилизатора исключает отрыв пламени.

В других конструкциях горелок отрыв пламени предотвращается за счет снабжения горелок керамическими тоннелями или устройством в топке горок из огнеупорных материалов, которые нагреваются до высоких температур (больше температуры воспламенения газа), обеспечивая непрерывное воспламенение газовоздушной смеси.

Мастер Куделя © 2013 Копирование материалов сайта разрешено только с указанием автора и прямой ссылки на сайт-источник

Горелкинг

или сага о горелках. Часть 1

С недавних пор наш словарный запас обогатился новыми терминами из различных областей общественной жизни (петтинг, пехтинг и т. п.) Дабы не отставать от моды и от прогрессивной общественности, я назвал свой опус " Горелкинг или сага о горелках (самодельных) " .
К горелкам у меня давно сложились тёплые (иногда даже горячие) отношения. Поэтому я делюсь инфой с особым чувством.
Следует сразу оговорить, что речь здесь пойдёт о газовых, пропановых горелках. И именно инжекционных, потому что окислитель (воздух) в них засасывается сам с помощью струи горючего газа (не путать с гремучим), направленной на выход горелки. Иногда, правда, самотёка воздуха бывает недостаточно, и для повышения температуры горения смеси, воздух нагнетает воздуходувка. Но по- любому, воздух используется не из баллона, а просто атмосферный. Поэтому к данному типу горелок подходит только одна трубка с газом, а именно от пропанового баллона. Поскольку, чтобы выбрать нужную именно для ваших целей горелку, мало просто показать фото и написать что-то, мне пришлось записать видео ролики. Они дают более наглядную картину работы этих устройств.

Мини- горелка

Эта горелка изначально создавалась для пайки скани с очень маленькими деталями, поэтому основной упор сделан на уменьшение диаметра языка пламени. Тогда, когда делалась эта горелка, ещё не продавались маленькие горелки с баллончиком для газа в виде ручки горелки. Поэтому за основу взята универсальная средняя горелка (описание далее) и уменьшены пропорционально все размеры.

Пайка мелких деталей. Иногда для внесения припоя и удержания элементов филиграни не хватает рук:) Особенностью этой горелки является применение рассекателя. Этим достигается стабильность пламени во всём диапазоне давлений (в пределах разумного, конечно), а именно от 0,2 до 3 кг/см2. Количество воздуха не регулируется. Оно подобрано диаметром отверстий подсоса. Если, всё же, приспичит регулировать обогащение смеси, внутрь кольца с накаткой поместить обрезок силиконовой трубки и, вращая кольцо, можно регулировать.Подобранный диаметр отверстия форсунки около 0,12 мм.

Показан один из способов изготовления форсунки. Капилляр припаян к винту, вкрученному в трубку. Винт на ФУМ.Соблюдаем соосность. Можно без капиляра, просверлив на станке латунный винт М3.
А что здесь действительно надо регулировать, так это положение трубки с форсункой. После поджига горелки перемещаем трубку вперёд- назад и найдя оптимальное положение, закрепляем винтом.

Эта горелка является самой универсальной горелкой для пайки мелкой и средней ювелирки твёрдыми припоями. (Конечно, если не надо, чтобы обе руки были свободны :) Зато регулировку можно делать той же рукой, что держит горелку.
Она тоже содержит рассекатель и поэтому сама по себе никогда не погаснет при любых нормальных значениях давления пропана.
Регулировка пламени той же рукой.Силиконовой трубкой защищено место, где подвешивается на крючёк. Ручка из эбонита. При правильной настройке горелка даёт узкий длинный факел.


Вокруг оголовка горелки сделана теплоизолирующая муфта. Её применение позволяет прогреть оголовок, этим можно несколько повысить температуру пламени. Она сделана из асбестового волокна с добавлением каолина и жидкого стекла.
Паяемый предмет должен находиться в восстановительной зоне пламени. Проверить это можно, положив в пламя кусочек медного провода. В восстановительной зоне поверхность металла становится блестящей.

Форсунка на этой горелке выполняется так же, как и на предыдущей. Подобранный диаметр отверстия форсунки 0,16 мм.
Количество воздуха можно также регулировать, поместив внутрь кольца кусочек силиконовой трубки соответствующего диаметра. Но с такими размерами, как у меня на чертеже, смесь уже достаточно сбалансирована.

Средняя прямая горелка

Как видите, над названиями горелок я не очень парился, надо ведь чтобы заголовки были разные. Надо же их как то называть.
Следующая горелка отличается от предыдущих геометрией расположения составных частей, а принципы работы такие же.

У этой горелки пламя более мягкое, поэтому её лучше применять для прогрева чего- нибудь (отжиг проволоки, патинирование) или там, куда предыдущая не достанет. У неё такой же рассекатель, как и у предыдущих горелок. И своеобразно сделан подсос воздуха.


Чертежа на эту горелку нет, потому что основные параметры совпадают с предыдущей горелкой. Оголовок и рассекатель, а также диаметр воздуховода такие же. И, главное, диаметр форсунки такой же.

Большая ручная горелка

Эта горелка является аналогом предыдущих ручных горелок. Все параметры аналогичны, только увеличена мощность. Этой горелкой можно паять не только скань, но и медные трубки холодильников.

Единственной стандартной составляющей в этой горелке является газовый кран. Но не проходной, как в предыдущих случаях, а угловой. На нём всё и крепится.Подобранный диаметр отверстия форсунки 0,23 мм.

Дополнение 1

Сегодня получил очередное письмо с просьбой объяснить где взять капилляры и вообще, как сделать форсунку. Предлагалось даже применить электроэррозию. Я даже не предполагал, что это может вызвать затруднения.
Итак, я это делаю таким образом. Прежде всего я приноровился использовать для форсунок винты М3 (обычный винт с резьбой диаметра 3 мм, метрической).
Итак, берёте свою коробку с винтами М3, вываливаете её и распределяете равномерным слоем. Затем берёте магнит и вытягиваете все притягивающиеся винты. У вас в результате останутся винты, которые не притягиваются. То, что они выглядят так же, как и остальные, не должно вас обмануть. Это латунные винты с гальваническим покрытием. На фото под цифрой 1.
Если нет М3 латунных, ничто не мешает проделать это с М4.

Далее перед вами пять путей:
- сразу просверлить отверстие нужным диаметром сверла. Но это для довольно больших отверстий и при наличии прецизионной сверлилки.
- просверлить с обеих сторон винта большим сверлом, но не до конца. Потом эту перемычку пробить иглой или досверлить малым сверлом.
- просверлить большим сверлом, а затем заполнить отверстие припоем ПОС, а затем уже работать с ним, что гораздо легче.
- просверлить большим сверлом, а затем припоем ПОС впаять соосно в винт нержавеющую проволочку соответствующего диаметра. А затем выдернуть проволочку.
И, наконец, можно впаять легкоплавким припоем ПОС в просверленное отверстие капилляр соответствующего диаметра.
Итак, капилляры, то есть тонкие трубочки.
Под цифрой 2 капилляры из самописцев приборов КИП. Вряд ли вам стало легче от такого совета.
А вот под цифрой 3 самый реальный вариант. Когда вам доктор сделает укол, не охайте, не жалейте себя, а соберите волю в кулак и попросите доктора отдать вам иголку на память. Он отдаст, ему не жалко. Таким образом за больную жизнь свою и своих близких вы соберёте обширную коллекцию капилляров. А если вам повезёт делать уколы импортными шприцами, то ассортимент станет гораздо богаче. У них есть и очень тонкие иглы, например для прививок.
Не забудьте собрать также коллекцию сталистых упругих проволочек для прочистки капилляров- цифра 4.
Цифра 5- в комплекте к моей новой газовой плите шёл целый набор форсунок с разными диаметрами отверстий.
И, наконец, 6- концевые зажимы для монтажа многожильных электрических проводов. Целая куча разных диаметров.

Дополнение 2

Иногда приходят жалобы трудящихся, что горелка не работает или работает как то не так. Здесь выложены только работающие конструкции, теоретических нет. Значит, что то не доглядели или не поняли принцип действия горелок. Сейчас попробую объяснить на примере мини- горелки. Для этого приведу упрощённую схему этой конкретной конструкции.

1. Убедитесь, что давление поступающего газа находится в приемлемом диапазоне 0,2-4 кг/см2. А самый рабочий диапазон от 0,5 до 2,5 кг/см2. А диаметр отверстия форсунки 0,12 +/-0,02 мм.
2. Отверстия для подсоса воздуха не закрыты.
3. На рисунке. Диаметр трубки с подающейся газовоздушной смесью 3,5 мм. А центральное отверстие в рассекателе диаметром 3 мм. То есть на 0,5 мм меньше. Поэтому часть потока газовоздушной смеси расходится в стороны в маленькие отверстия. Скорость потока через эти отверстия меньше, чем основного потока. Эти маленькие отверстия как раз и предназначены для поджига основного потока. А из за небольшой скорости газовоздушной смеси через них горят стабильно и не дают сдуть пламя основного потока. Это справедливо для всех горелок такого типа, что на этой страничке, с рассекателями пламени.
4. Исходя из вышесказанного проверьте, остался ли зазор в 2 мм между обеими частями головки горелки. При правильном изготовлении по чертежам, этот зазор будет. Иначе вы будете наблюдать только центральный факел, без боковых огоньков, который легко сдувается при повышении давления поступающего на форсунку газа.

Слева- неработающая горелка. Справа- как должно быть.
5. И пару слов о положении форсунки. Срез капилляра, из которого выходит газ, нужно подобрать его положение уже при работающей горелке в районе напротив отверстий для забора воздуха, или до этих отверстий. И, конечно, трубка с капилляром не должна перекрывать воздушные отверстия.

В инжекторных горелках подача горючего газа в сме­сительную камеру производится за счет подсоса его стру­ей кислорода, вытекающего с большой скоростью из от­верстия сопла. Этот процесс подсоса газа более низкого давления струей кислорода, которая подводится с более

высоким давлением, называется инжекцией. Горелки, в которых используется подобный принцип действия, на­зываются инжекторными.

Для нормальной работы инжекторных горелок требу­ется, чтобы давление ацетилена было значительно ниже, чем давление кислорода (0,001-0,12 МПа и 0,15-0,5 МПа соответственно).

На рис. 61 приведена схема устройства инжекторной горелки.

Горелка состоит из двух основных частей - ствола и наконечника. Ствол имеет кислородный ниппель 1 и аце­тиленовый ниппель 16 с трубками 3 и 15, рукоятку 2, корпус 4 с двумя вентилями - ацетиленовым 14 и кис­лородным 5.

Вентиля служат для пуска и прекращения подачи газа при гашении пламени, а также для регулировки расхода.

Наконечник горелки состоит из смесительной каме­ры 12, инжектора 13, трубки 11 с ниппелем наконечни­ка б и мундштука 7. Весь узел наконечника подсоеди­няется к корпусу ствола горелки специальной накид­ной гайкой.

Инжектор 13 (рис. 62) - это цилиндрическая деталь с центральным каналом для кислорода и периферийными радиально расположенными каналами для ацетилена. Центральный канал имеет очень маленький диаметр.

Рис. 62. Схема инжекторного устройства

Для нормальной инжекции необходим правильный вы* *

бор зазора между торцом инжектора и конусом смеси — , тельной камеры.

Разряжение за инжектором (подсасывающее ацетилен) достигается за счет высокой скорости кислородной струи (до S00 м/сек). Давление кислорода, который поступает через вентиль 5, составляет от 0,5 до 4 кгс/см2.

В смесительной камере ацетилен смешивается с кис­лородом и смесь поступает в канал мундштука. Смесь выходит из мундштука со скоростью 50-170 м/сек.

Нагрев наконечника горелки снижает инжекцию и уменьшает разряжение в камере инжекции, что умень­шает поступление ацетилена в горелку. Это, в свою оче — 1 редь, ведет к усилению окислительного действия свароч­ного пламени. Чтобы восстановить нормальный состав сва­рочного пламени, сварщик должен по мере нагревания наконечника увеличивать поступление ацетилена, откры­вая ацетиленовый вентиль.

В комплект горелки входит несколько наконечников разных номеров. Для каждого наконечника установлены размеры каналов инжектора и размеры мундштука.

Конструкция пропан-кислородных горелок отличает­ся наличием перед мундштуком устройства 10 для подо­грева пропан-кислородной смеси. Дополнительный нагрев нужен для повышения температуры пламени.

Безынжекторные горелки. В безынжйкторных горел­ках горючий газ и кислород подаются примерно под оди­наковым давлением (0,05-0,01 МПа). В горелке отсут­ствует инжектор: вместо него имеется простое смеситель­ное сопло, которое ввертывается в трубку наконечника горелки (рис. 63).

Кислород по рукаву через ниппель 4, вентиль 3 и спе­циальные дозирующие каналы поступает в смеситель го­релки. Аналогично поступает в горелку и ацетилен.

Рис. 63. Схема безынжекторной горелки

Для образования нормального сварочного пламени го­рючая смесь должна вытекать из горелки с определенной скоростью, а именно со скоростью горения. Если скорость истечения больше скорости горения, то пламя будет от­рываться от мундштука и гаснуть. Если же, наоборот, скорость истечения меньше скорости горения, то горю­чая смесь будет загораться внутри наконечника.

В связи с этим сварочные посты дополнительно обору­дуют автоматическими регуляторами, обеспечивающими равенство давлений ацетилена и кислорода.