Схемы электроснабжения осветительных электроустановок. Кнорринг - Осветительные установки Общие принципы построения схем электроснабжения осветительных установок

Аварийное погасание освещения приносит материальный ущерб, вызываемый уменьшением выпуска продукции, а иногда и порчей оборудования и исходных материалов. Это в отдельных случаях усугубляется опасностью возникновения пожара, взрыва, одиночного и даже массового травматизма, которые могут явиться следствием непроизвольных или неправильных действий персонала в темноте. Поэтому вопросу надежности питания осветительных установок уделяется большое внимание.

Согласно требованиям светильники аварийного освещения для продолжения работы должны быть присоединены к независимому источнику питания, т. е. к источнику питания, на котором сохраняется напряжение при исчезновении его на других источниках данного объекта.

Независимыми источниками питания являются, например, две секции сборных шин (ТП), каждая из которых получает питание от трансформатора, в свою очередь питаемого от независимого источника (например, трансформаторы присоединяются к разным генераторам электростанции). При этом секции сборных шин подстанции не должны быть связаны между собой либо связь между ними должна автоматически прерываться при нарушении нормальной работы одной из них.

Независимыми источниками питания являются также аккумуляторные батареи и дизель-генераторы. Эти источники электроэнергии используются для питания аварийного освещения в тех случаях, когда нет иных, более экономичных способов обеспечения независимого питания.

Допускается питание светильников аварийного освещения от сети рабочего освещения с автоматическим переключением на питание от независимого источника в случае аварийного погасания рабочего освещения.

В производственных зданиях без окон и фонарей аварийное освещение как для продолжения работы, так и для эвакуации должно питаться от независимого источника. В таких помещениях сети рабочего и аварийного освещения должны идти от разных источников питания, не допускается использование силовых сетей для питания общего рабочего или аварийного освещения.

Независимый источник для питания аварийного эвакуационного освещения требуется также в зданиях, в которых возможно большое скопление людей: театры, кино, клубы, станции метро, вокзалы, музеи и др.

В остальных случаях источник питания аварийного освещения для эвакуации может не быть независимым, однако следует всюду по возможности обеспечивать максимальную надежность питания аварийного освещения.

Надежность работы осветительной установки в значительной мере определяется принятой схемой питания. При выборе схемы учитываются необходимая степень надежности, требуемые уровень и постоянство напряжения у источников света, удобство эксплуатации и экономичность установки.

При наличии на объекте одной однотрансформаторной подстанции (рис. 1) питание различных нагрузок (силовых, рабочего и аварийного освещения) рекомендуется производить самостоятельными питающими линиями от шин низшего напряжения трансформаторной подстанции. В этом случае погасание всего освещения возможно лишь при выходе из строя трансформатора, что практически бывает редко.

Рис.1. Схема питания осветительной установки от одной однотрансформаторной подстанции: 1 - трансформаторная подстанция, 2 - силовая нагрузка, 3 - рабочее освещение, 4 - аварийное освещение.

Допускается питание силовых и осветительных нагрузок небольших малоответственных зданий одной линией от трансформаторной подстанции. При этом разделение сетей силовых нагрузок, рабочего и аварийного освещения обязательно и должно начинаться от ввода в здание.

На рис. 2 изображена схема питания осветительной установки при наличии на объекте двух однотрансформаторных подстанций. В этом случае питание рабочего и аварийного освещения зданий (или участков одного здания), как правило, производится от разных подстанций.

Рис. 2. Схема питания осветительной установки от двух одиотрансформаторных подстанций: 1 - трансформаторная подстанция, 2 - силовая нагрузка, 3 - рабочее освещение, 4 - аварийное освещение.

Такая схема надежней предыдущей, так как при выходе из строя одного трансформатора продолжает работать один из видов освещения, питающийся от другой подстанции.

Если трансформаторы получают независимое питание, то обе трансформаторные подстанции рассматриваются как независимые источники питания. Питание от двух трансформаторных подстанций позволяет улучшить качество освещения путем выбора для питания рабочего освещения той из них, напряжение на шинах которой более постоянно.

Аналогичной разобранной выше схеме (рис. 2) является получившая большое распространение схема питания освещения от одной двухтрансформаторной подстанции.

Шины низшего напряжения двухтрансформаторных ТП разделяются на две секции по числу трансформаторов. Между секциями устанавливается секционный выключатель, позволяющий соединить обе секции в одну. Рабочее и аварийное освещения питаются от разных секций. Если трансформаторы ТП питаются от разных генераторов электростанции, то они являются независимыми источниками.

При аварии с одним трансформатором двухтрансформаторной подстанции он автоматически отключается и одновременно замыкается секционный выключатель, это называется автоматическим включением резерва, и тогда обе секции остаются под напряжением, получая питание от одного трансформатора, работающего с перегрузкой. При этом и рабочее и аварийное освещения остаются включенными.

На ряде промышленных предприятий с успехом применяется питание электрических нагрузок по схеме блока трансформатор - магистраль (рис. 3).

Рис. 3. Схема питания осветительной установки при системе блока трансформатор - магистраль. 1 - трансформаторная подстанция, 2 - главная магистраль, 3 - разъединитель на перемычке между главными магистралями, 4 - вторичные магистрали, 5 - силовая нагрузка, 6 - рабочее освещение, 7 - аварийное освещение.

При такой схеме шины щитов низшего напряжения однотрансформаторных ТП, размещаемых в цехе, как бы удлиняются, образуя протяженные мощные питающие линии - главные магистрали (конструктивно выполняемые в виде магистральных шинопроводов).

Между главными магистралями двух соседних устанавливаются , играющие роль секционных выключателей схемы двухтрансформаторной ТП. От главной магистрали отходят вторичные магистрали меньшего сечения ().

На щитах низшего напряжения трансформаторной подстанции сохраняется небольшое количество линейных выключателей, один из которых может использоваться для питания рабочего освещения прилегающего к трансформаторной подстанции участка цеха. Аварийное освещение того же участка цеха в отличие от схемы рис. 2 может быть подключено ко вторичной магистрали соседней трансформаторной подстанции.

Недостатком такой схемы по сравнению со схемой, изображенной на рис. 2, является худшее качество напряжения, подаваемого на щиток аварийного освещения (большие колебания, вызванные пуском электродвигателей, и большие потери напряжения в питающих сетях). Если соседние трансформаторы получают питание от разных генераторов электростанции, то они являются независимыми источниками и тогда схема будет обладать высокой надежностью.

На рис. 1 - 3 групповые щитки рабочего и аварийного освещения присоединяются непосредственно к питающим линиям, отходящим от трансформаторных подстанций. На практике часто приходится устанавливать промежуточные магистральные щитки (МЩ).

Необходимость установки магистральных щитков вызывается стремлением уменьшить сечения питающих линий, создать возможность отключения отдельных линий для ремонта и сократить количество линий, отходящих от щита низшего напряжения трансформаторной подстанции.

Расчетную мощность освещения Р р.о определяют с учетом потерь мощности в пускорегулирующей аппаратуре (ПРА):

P р.о = P ном.о к ПРА, (12.6)

где Р ном.о = Р ном.i ×N – номинальная (установленная) мощность осветительной сети (N – число ламп; Р ном.i – номинальная мощность одной лампы); k ПРА – коэффициент, учитывающий потери в ПРА.

Значения коэффициента, учитывающего потери в ПРА, принимаются: для ламп типов ДРЛ и ДРИ k ПРА = 1,1; для ЛЛ со стартерными схемами включения k ПРА = 1,2; для ЛЛ с бесстартерными схемами включения k ПРА = 1,3–1,35. В большинстве справочников (учебников) расчетную мощность определяют введением коэффициента спроса k с . Однако для расчета групповой сети освещения здания и всех звеньев сети аварийного освещения, а также для расчета сети наружного освещения следует принимать k с = 1.

Электроснабжение рабочего освещения, как правило, выполняют самостоятельными линиями от щитов подстанции. При этом электроэнергия от подстанции передается питающими линиями на осветительные магистральные щитки, а от них – групповым осветительным щиткам. Питание источников света осуществляется от групповых щитков групповыми линиями. Светильники аварийного освещения, в том числе для продолжения работ, а также другие, в частности для эвакуации, должны быть присоединены к независимому источнику питания.

Электрическая сеть осветительных установок состоит из питающих и групповых линий. Питающие линии выполняют по радиальным, магистральным, а также радиально-магистральным схемам (рис. 12.2). Радиальные питающие линии применяют при нагрузках на групповые щитки более 200 А. Наиболее распространены смешанные радиально-магистральные сети. Выбор схемы питающих и групповых сетей должен определяться: требованиями к бесперебойности действия осветительной установки; технико-экономическими показателями (минимальными приведенными показателями, расходом цветных материалов и электроэнергии); удобством управления и простотой эксплуатации осветительной установки.

При выборе трассы осветительной сети и мест установки магистральных и групповых щитков учитывают: удобство эксплуатации (доступность); исключение возможности повреждения при производстве работ; эстетические требования; уменьшение длины трассы.

Технико-экономическими расчетами установлено, что максимальная длина трехфазных четырехпроводных групповых линий при напряжении 380/220 В может быть принята не более 80 м, а двухпроводных – не более 35 м. К групповым линиям не рекомендуется присоединять на фазу более 20 ламп накаливания, а при использовании многоламповых люминесцентных светильников – до 50 ламп.

Размещение щитков следует производить вблизи от центра электрических нагрузок, при этом необходимо обеспечить доступность их обслуживания. Не следует устанавливать щитки в горячих и сырых цехах предприятий, а также в пожароопасных помещениях. Запрещается установка щитков вовзрывоопасных помещениях всех классов.

Много лет сети освещения выполняли из проводов на основе алюминия. Минимальное сечение изолированных проводов с алюминиевыми жилами должно было быть не менее 2,5 мм 2 . В настоящее время, учитывая ненадежность, недолговечность, пожарную опасность алюминия, следует применять медь.

Если к линии вдоль ее длины подключить ряд электроприемников, то токовая нагрузка по мере удаления от источника будет уменьшаться. Поэтому электрические осветительные сети, исходя из экономической целесообразности, строят с убывающей величиной сечения проводов в направлении от источника питания к электроприемникам.

На практике для расчетов сечений осветительных сетей при условии наименьшего расхода проводникового материала пользуются упрощенной методикой, выведенной на основании математического анализа и ряда принятых допущений:

S = M прив / (C∆U доп), (12.7)

где S – сечение провода данного участка, мм 2 ; M прив – приведенный момент мощности, кВт · м; С – коэффициент, зависящий от схемы питания (трех, двух- или однофазная) и марки материала проводника; ΔU доп , %, – допустимая потеря напряжения в осветительной сети от источника питания до наиболее удаленной лампы (ΔU доп = 2,5 %). Приведенный момент мощности

М прив = ∑М + ∑аm, (12.8)

где М – сумма моментов данного и всех последующих по направлению передачи энергии участков с тем же числом проводов в линии, как и на данном участке; Σаm – сумма моментов всех ответвлений, имеющих иное число проводов в линии, чем на данном участке (а – коэффициент приведения моментов, зависящий от числа проводов на участке и в ответвлении).

При выборе сечений проводов для первых участков сети следует принимать ближайшие стандартные сечения S cc . По выбранному стандартному сечению данного участка S i cт и его фактическому моменту M i определяют фактические потери напряжения ΔU фi :

∆U ф i = M i / (CS icc). (12.9)

Последующие участки рассчитывают аналогично с учетом оставшихся (или располагаемых) потерь напряжения на них:

∆U рас.п = ∆U доп - ∆U ф i (12.10)

После определения сечений участки проверяют по нагреву:

I pi < I доп i , (12.11)

где I рi – расчетный ток i-го участка; I допi – допустимый ток выбранного на i-м участке сечения.

Расчетный ток определяют по следующим формулам: для однофазной (двухпроводной) сети освещения

I p = P p ∙ 10 3 / U ф cosφ ; (12.12)

для двухфазной (трехпроводной) сети при включении ламп на фазное напряжение

I p = P p ∙ 10 3 / 2U ф cosφ ; (12.13)

для трехфазной (четырехпроводной) сети

I p = P p ∙ 10 3 / √3U ф cosφ ; (12.14)

где Р р – расчетная мощность, кВт.

Значение коэффициента мощности для различных видов ламп следующее: cosφ = 1 – для сетей с лампами накаливания; 0,95 – для сетей с ЛЛ и компенсированными ПРА; 0,6 – для сетей с лампами ДРЛ.

В последнее десятилетие получили распространение низковольтные воздушные сети, выполненные как самонесущая система изолированных проводов (СИП). Используется СИП в городах как обязательная прокладка, как магистраль в сельских зонах со слабой плотностью населения, ответвления к потребителям. Способы прокладки СИП различны: натягивание на опорах; натягивание по фасадам зданий; прокладка вдоль фасадов.

Конструкция СИП (униполярных бронированных и небронированных, триполярных с изолированной или голой несущей нейтралью) в общем случае состоит из медной или алюминиевой проводниковой многопроволочной жилы, окруженной внутренним полупроводниковым экструдированным экраном, затем – изоляцией из сшитого полиэтилена, полиэтилена или ПВХ. Герметичность обеспечивается порошком и компаундированной лентой, поверх которых расположен металлический экран из меди или алюминия в виде спирально уложенных нитей или ленты, с использованием экструдированного свинца. Поверх подушки кабельной брони, выполненной из бумаги, ПВХ, полиэтилена, делают броню из алюминия в виде сетки из полосок и нитей. Внешняя защита выполнена из ПВХ, полиэтилена или смесей без гелогена. Пролеты прокладки, рассчитанные с учетом ее температуры и сечений проводов (не менее 25 мм 2 для магистралей и 16 мм 2 на ответвлениях к вводам для потребителей, 10 мм2 для сталеалюминиевого провода) составляют от 40 до 90 м.

Вопросы для самопроверки

1. Перечислите достоинства и недостатки различных источников света в помещениях.

2. Назовите области применения различных типов светильников.

3. От чего зависит количество светильников в помещении?

4. Каким образом выполняется электроснабжение осветительной установки?

Литература: .

Напряжения и источники питания. Выбор напряжения для осветительной установки определяется общими требованиями, принимаемыми для электроснабжения объекта, а также требованиями электробезопасности.

Для производственных, общественных и жилых зданий, а также для открытых территорий должно применяться напряжение не выше 380/220 В переменного тока с заземленной нейтралью.

В помещениях с повышенной опасностью и особо опасных при использовании для освещения светильников с лампами накаливания следует применять напряжение не выше 42 В.

Светильники рабочего освещения и светильники аварийного освещения в производственных и общественных зданиях и в зонах работы на открытых пространствах должны получать питание от разных независимых источников питания. Допускается питание рабочего и аварийного освещения от разных трансформаторов одной трансформаторной подстанции (ТП) при питании трансформаторов от разных независимых источников. В общественных зданиях при отсутствии независимых источников питание аварийного освещения допускается осуществлять от трансформатора, не используемого для питания рабочего освещения.

Питание наружного освещения объекта должно быть отделено от питания внутреннего освещения.

Электроснабжение освещения выполняют, как правило, самостоятельными линиями от РУ-0,4 кВ ТП. Типовые схемы питания освещения объектов приведены на рис. 3.1.

Рис. 3.1. Типовые схемы питания освещения объектов:

1 – питающие линии;

2 – групповые линии;

3 – магистральный осветительный пункт;

4 – групповой осветительный щиток

Электроэнергия от ТП передается питающими линиями на осветительные магистральные пункты, а от них – групповым осветительным щиткам. Непосредственное питание источников света осуществляется от групповых щитков групповыми линиями.

Схема питания освещения и количество ее звеньев определяются, главным образом, мощностью, требуемой для освещения, и размерами объекта. В простейшем случае групповые щитки (или щиток) могут питаться линиями, отходящими непосредственно от РУ-0,4 кВ ТП.

Вопросы резервирования питания осветительных установок решаются в комплексе проекта электроснабжения объекта. Двухтрансформаторные ТП с устройством АВР обеспечивают возможность продолжения работы освещения при аварийном отключении одного из трансформаторов.

Питающие и групповые линии выполняются по радиальным, магистральным и смешанным схемам (рис. 3.1). Выбор схемы питания определяется:



Требованиями к бесперебойности питания осветительных установок;

Технико-экономическими показателями (приведенными затратами, расходом цветного металла и электроэнергии);

Удобством управления и простотой эксплуатации осветительной установки.

Технико-экономическими расчетами установлено, что наибольшая длина трехфазных четырехпроводных групповых линий при напряжении 380/220 В составляет не более 100 м, а двухпроводных – не более 40 м. Каждая групповая линия, как правило, должна содержать на фазу не более 20 ламп накаливания, ДРЛ, ДРИ, ДНаТ, а при использовании многоламповых люминесцентных светильников – до 50 ламп.

Групповые линии сетей освещения должны быть защищены плавкими предохранителями или автоматическими выключателями на рабочий ток не более 25 А. Групповые линии, питающие газоразрядные лампы мощностью 125 Вт и более, лампы накаливания мощностью 500 Вт и более допускается защищать плавкими предохранителями или автоматическими выключателями на рабочий ток до 63 А.

Автоматические выключатели в осветительных сетях получили более широкое распространение. Они удобно компонуются в щитке, безопасны в обслуживании, совмещают функции защиты и управления, действуют многократно.

В осветительных сетях, в отличие от силовых сетей, к трехфазной цепи присоединяются однофазные электроприемники. На рис. 3.2 показаны три варианта распределения ламп освещения между фазами в трехфазной цепи.

Верхний вариант оптимален с точки зрения потерь напряжения в линии, так как центры тяжести нагрузок разных фаз совпадают, но этот вариант не является лучшим в отношении ослабления пульсаций освещенности и, кроме того, при случайном отключении одной-двух фаз создается случайное распределение освещенности вдоль линии.

Рис. 3.2. Распределение ламп по фазам

Средний вариант применяется наиболее часто. Он лучше, чем остальные, обеспечивает снижение пульсаций освещенности и при отключении одной-двух фаз дает относительно равномерное распределение освещенности вдоль линии.



Нижний вариант применяется в тех случаях, когда освещение помещения должно включаться по участкам.

Групповые осветительные щитки (ЩО), расположенные на стыке питающих и групповых линий, предназначены для установки аппаратов защиты и управления групповыми электрическими сетями.

При выборе ЩО учитывают условия среды в помещениях, способ установки, типы и количество установленных в них аппаратов.

По роду защиты от внешних воздействий ЩО имеют следующие конструктивные исполнения:

Защищенное;

Закрытое;

Брызгонепроницаемое;

Пыленепроницаемое;

Взрывозащищенное;

Химически стойкое.

Конструкции ЩО допускают открытую установку на стенах (колоннах, конструкциях и пр.) и утопленную в нишах стен.

Размещение ЩО следует производить вблизи от центра электрических нагрузок, при этом необходимо обеспечить доступность обслуживания ОЩ. При размещении ЩО следует выбирать помещения с более благоприятными условиями окружающей среды. Не следует размещать ЩО в горячих и сырых цехах предприятия, а также в пожароопасных помещениях. Запрещается устанавливать ЩО во взрывоопасных помещениях.

Трассировка групповых линий подчиняется ряду нормативных требований и практических рекомендаций:

Линии должны прокладываться по возможно более коротким трассам, при открытой проводке параллельно стенам помещений, при скрытой проводке по кратчайшему направлению;

Желательно совмещать трассы линий, идущих в одном направлении, даже если это несколько удлиняет протяженность линий;

При возможности следует прокладывать линии по стенам, а не по потолкам;

Линии, открыто проложенные по потолку, следует прокладывать перпендикулярно к стороне с окнами;

Следует ограничивать число проходов сквозь стены и число ответвительных коробок;

В помещениях с фермами целесообразно прокладывать линии поперек ферм в виде перекидок между фермами;

В пожароопасных помещениях запрещается транзитная прокладка линий, не относящихся к электроприемникам этого помещения.

Выполнение осветительных сетей. Электрические осветительные сети выполняются изолированными проводами, кабелями, шинопроводами. Провода и кабели применяются с медными и алюминиевыми жилами, шинопроводы с алюминиевыми шинами.

Питающие линии вне помещений выполняются преимущественно кабелями в земляных траншеях или кабельных сооружениях. Реже применяются воздушные линии с голыми или изолированными (СИП) проводами.

Осветительные сети внутри помещений выполняются открытыми и скрытыми электропроводками. В жилых и общественных зданиях предпочтительнее скрытые электропроводки ввиду их эстетичности.

Наиболее распространенные способы открытой электропроводки:

Непосредственная прокладка проводов и кабелей по стенам и потолкам с помощью специальной крепежной арматуры;

- прокладка в лотках из перфорированной стали;

- прокладка в трубах при необходимости защиты проводов и кабелей от механических повреждений;

- тросовые проводки, в которых провод (кабель) крепится к предварительно натянутому тросу (проволоке);

- проводка осветительным шинопроводом (ШОС).

Шинопроводы применяются в производственных помещениях, общественных и административных зданиях. Шинопроводы ШОС2 и ШОС3 имеют однофазное исполнение, шинопроводы ШОС4 и ШОС5 – трехфазное.

Шинопроводы ШОС2 и ШОС4 двух- и четырехпроводные применяются для электрических сетей с глухозаземленной нейтралью. Нулевой проводник замкнут на металический корпус шинопровода и образует совмещенный (PEN ) проводник.

Шинопроводы ШОС3 и ШОС5 выполняются трех- и пятипроводными. Здесь нулевой рабочий и нулевой защитный проводники разделены (N и PEN ). Рабочий нулевой проводник (N ) находится в корпусе шинопровода, роль защитного проводника (РЕN ) выполняет металлический корпус.

Шинопровод ШОС обеспечивает возможность штепсельного присоединения (без снятия напряжения с линии) однофазных приемников электрической энергии на номинальный ток до 10 А.

Шинопровод состоит из типовых элементов: секций (прямых, вводных, гибких); торцовых заглушек; штепселей и конструкций для крепления.

Соединение секций разъемно-разборное. Один конец секции снабжен штепсельной розеткой с затягивающими винтами, а на другом конце выступающие шины образуют штепсельную вилку. После того, как штепсель одной секции вставлен в розетку другой секции, штепсельный контакт затягивается винтами.

Соглашение об использовании материалов сайта

Просим использовать работы, опубликованные на сайте , исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Классификация помещений боулинг-клуба по взрыво-, пожаро-, электробезопасности. Категории надежности электроснабжения. Выбор числа и мощности силовых трансформаторов на подстанции, проводов и кабелей силовых сетей. Защита от поражения электрическим током.

    курсовая работа , добавлен 26.05.2012

    Классификация помещений по взрыво-, пожаро-, электробезопасности. Расчет осветительных сетей и силовых нагрузок для каждой группы электроприемников. Конструктивное исполнение и монтаж электрических сетей на предприятии. Система уравнивания потенциалов.

    дипломная работа , добавлен 29.01.2010

    Выбор элементов электроснабжения и электрооборудования механического цеха завода среднего машиностроения. Расчет электрических нагрузок, компенсирующего устройства и трансформатора. Классификация помещений по пожаро-, взрыво-, электробезопасности.

    курсовая работа , добавлен 29.01.2011

    Характеристика электромеханического цеха, его структура и оборудование. Классификация помещений по взрыво-, пожаро-, электробезопасности. Категория надёжности электроснабжения. Расчёт электрических нагрузок, компенсирующего устройства и трансформаторов.

    курсовая работа , добавлен 02.02.2011

    Характеристика объекта электроснабжения, электрических нагрузок и его технологического процесса. Классификация помещений по взрыво-, пожаро-, электробезопасности. Расчет осветительной нагрузки цеха. Выбор питающих проводов, распределительных пунктов.

    курсовая работа , добавлен 03.02.2015

    Расчет силовых сетей и выбор электрооборудования на напряжение до 1 кВ. Составление спецификаций электрооборудования и материалов. Реализация требований ПУЭ и стандартов МЭК по обеспечению электробезопасности на объекте. Выбор питающего кабеля ввода.

    дипломная работа , добавлен 10.02.2010

    Характеристика электрических нагрузок объекта и его технологического процесса. Классификация помещений по взрыво-, пожаро-, и электробезопасности. Категория надежности и выбор схемы снабжения и освещения механического участка ОАО "Атоммашэкспорт".

    дипломная работа , добавлен 08.06.2013

Питание электрического освещения осуществляется, как правило, совместно с силовыми электроприемниками от общих трехфазных силовых трансформаторов с глухозаземленной нейтралью с вторичным напряжением 400/230 В. Номинальное напряжение в таких сетях составляет 380/220 В.

Сети электрического освещения подразделяются на питающие, распределительные и групповые.

Питающая осветительная сеть – сеть от распределительного устройства подстанции или ответвления от воздушных линий электропередачи до вводного устройства (ВУ), вводно-распределительного устройства (ВРУ), главного распределительного щита (ГРЩ).

Распределительная сеть – сеть от ВУ, ВРУ, ГРЩ до распределетельных пунктов, щитков и пунктов питания освещения.

Групповая сеть – сеть от щитков до светильников, штепсельных розеток и других электроприемников.

Вводное устройство (ВУ) – совокупность конструкций, аппаратов и приборов, установленных на вводе питающей линии в здание или его обособленную часть.

Вводно-распределительное устройство (ВРУ) – вводное устройство, включающее в себя также аппараты и приборы отходящих линий.

Вводно-распределительное устройство (ВРУ) – вводное устройство, включающее в себя также аппараты и приборы отходящих линий. Вводно-распределительное устройство (ВРУ) – относится к виду электротехнических устройств низкого напряжения и используется в сетях с номинальным напряжением до 380 В переменного тока с частотой 50 Гц. ВРУ (вводно-распределительное устройство) защищает линии от перегрузок сети и коротких замыканий, получает и распределяет электроэнергию.

ВРУ классифицируется по следующим основным признакам:

по конструктивному исполнению (однопанельное ВРУ, многопанельное ВРУ, шкафное ВРУ);

по месту установки (в электрощитовых помещениях, вне этих помещений (например, уличное исполнение));

по виду установки (напольное ВРУ, настенное ВРУ, встраиваемое в нишу ВРУ);

по степени защиты;

по вводным схемам (один ввод, два ввода, два ввода с секционированием и т.п.);

по наличию АВР (блока автоматического ввода резерва);

по доступу обслуживающего персонала (квалифицированного, неквалифицированного).

Вводно-распределительное устройство (ВРУ) чаще всего находятся в системе электроснабжения здания (сооружения) на среднем уровне распределения питания напряжением 0,4кВ после ГРЩ. Но могут находится и на верхнем уровне как главный распределительный щит здания.

Главный распределительный щит (ГРЩ) – распределительный щит, через который снабжается электроэнергией все здание или его обособленная часть.

Групповой щиток – устройство, в котором установлены аппараты защиты и коммутационные аппараты (или только аппараты защиты) для отдельных групп светильников, штепсельных розеток и стационарных электроприемников.


В отношении обеспечения надежности электроснабжения электроприемники разделяются на следующие 3 категории:

I - электроприемники, перерыв в электроснабжении которых может повлечь за собой опасность для жизни людей, угрозу для безопасности государства, значительный материальный ущерб, расстройство сложного технологического процесса;

II - электроприемники, перерыв в электроснабжении которых может привести к массовому недовыпуску продукции, массовым простоям рабочих, механизмов, транспорта и т.д.

III - электроприемники, не попадающие под определения первой и второй категорий.

Некоторые типовые схемы питания осветительных электроэнергии установок производственных зданий приведены на рис. 3.2 - 3.7.

На рис. 3.2 приведены схемы питания электрического освещения от вводно-распределительного устройства (ВРУ) совместно с силовыми электроприемниками.

Рис. 3.2. Схема питания электрического освещения от ВРУ

На рис. 3.3 приведены схемы питания рабочего и эвакуационного освещения от одной однотрасформаторной подстанции. Осветительные щитки питаются по отдельным линиям от щита подстанции (рис. 3.3, а ) или по общей линии с разделением ее на вводе в здание (рис. 3.3, б ).

Рис. 3.3. Схема питания освещения от однотрансформаторной

подстанции

В линейных шкафах комплектных трансформаторных подстанций как правило установлены аппараты защиты на большие значения номинальных токов, поэтому в этом случае питание осветителых установок осуществляется через магистральные щитки (рис. 3. 4).

Рис. 3.4. Схема питания групповых щитков от магистрального щитка

Рис. 3.5. Схема питания электрического освещения от двух однотрансформаторных подстанций

При перекрестной схеме питания (рис. 3.5) рабочее освещение помещения питается от одного трансформатора, аварийное освещение в этом же помещении питается от другого трансформатора. В целях сохранения полного освещения при аварийных и плановых отключениях трансформаторов в ряде случаев желательно иметь перемычки между однотрансформаторными подстанциями, обеспечивающими сохранение напряжения на распределительном щите.

Рис. 3.6. Схема питания электрического освещения от двухтрансформаторной подстанции

При наличии в системе электроснабжения здания двухтрансформаторных подстанций щитки рабочего и аварийного освещения подключаются от разных трансформаторов (рис. 3.6). Шины щита низшего напряжения двухтрансформаторных подстанций, как правило, разделяются на 2 секции, по числу трансформаторов. Между секциями устанавливается секционный выключатель (АВР автомат ввода резерва), позволяющий объединить обе секции в одну при аварийном отключении одного из трансформаторов.

Для электроустановок первой категории надежности, в качестве второго источника питания аварийного освещения могут применяться аккумуляторные батареи, генераторы с дизельными или бензиновыми двигателями, а также используются электрические связи с ближайшими независимыми источниками (рис. 3.7).

Рис. 3.7. Схема питания электрического освещения от трех источников

Эта схема используется при питании осветительных установок от трех источников.