Органические вещества. Классы органических веществ. Органические соединения. Классы органических соединений

В прошлом ученые разделяли все вещества в природе на условно неживые и живые, включая в число последних царство животных и растений. Вещества первой группы получили название минеральных. А те, что вошли во вторую, стали называть органическими веществами.

Что под этим подразумевается? Класс органических веществ наиболее обширный среди всех химических соединений, известных современным ученым. На вопрос, какие вещества органические, можно ответить так – это химические соединения, в состав которых входит углерод.

Обратите внимание, что не все углеродсодержащие соединения относятся к органическим. Например, корбиды и карбонаты, угольная кислота и цианиды, оксиды углерода не входят в их число.

Почему органических веществ так много?

Ответ на этот вопрос кроется в свойствах углерода. Этот элемент любопытен тем, что способен образовывать цепочки из своих атомов. И при этом углеродная связь очень стабильная.

Кроме того, в органических соединениях он проявляет высокую валентность (IV), т.е. способность образовывать химические связи с другими веществами. И не только одинарные, но также двойные и даже тройные (иначе – кратные). По мере возрастания кратности связи цепочка атомов становится короче, а стабильность связи повышается.

А еще углерод наделен способностью образовывать линейные, плоские и объемные структуры.

Именно поэтому органические вещества в природе так разнообразны. Вы легко проверите это сами: встаньте перед зеркалом и внимательно посмотрите на свое отражение. Каждый из нас – ходячее пособие по органической химии. Вдумайтесь: не меньше 30% массы каждой вашей клетки – это органические соединения. Белки, которые построили ваше тело. Углеводы, которые служат «топливом» и источником энергии. Жиры, которые хранят запасы энергии. Гормоны, которые управляют работой органов и даже вашим поведением. Ферменты, запускающие химические реакции внутри вас. И даже «исходный код», цепочки ДНК – все это органические соединения на основе углерода.

Состав органических веществ

Как мы уже говорили в самом начале, основной строительный материал для органических веществ – это углерод. И практические любые элементы, соединяясь с углеродом, могут образовывать органические соединения.

В природе чаще всего в составе органических веществ присутствуют водород, кислород, азот, сера и фосфор.

Строение органических веществ

Многообразие органических веществ на планете и разнообразие их строения можно объяснить характерными особенностями атомов углерода.

Вы помните, что атомы углерода способны образовывать очень прочные связи друг с другом, соединяясь в цепочки. В результате получаются устойчивые молекулы. То, как именно атомы углерода соединяются в цепь (располагаются зигзагом), является одной из ключевых особенностей ее строения. Углерод может объединяться как в открытые цепи, так и в замкнутые (циклические) цепочки.

Важно и то, что строение химических веществ прямо влияет на их химические свойства. Значительную роль играет и то, как атомы и группы атомов в молекуле влияют друг на друга.

Благодаря особенностям строения, счет однотипным соединениям углерода идет на десятки и сотни. Для примера можно рассмотреть водородные соединения углерода: метан, этан, пропан, бутан и т.п.

Например, метан – СН 4 . Такое соединение водорода с углеродом в нормальных условиях пребывает в газообразном агрегатном состоянии. Когда же в составе появляется кислород, образуется жидкость – метиловый спирт СН 3 ОН.

Не только вещества с разным качественным составом (как в примере выше) проявляют разные свойства, но и вещества одинакового качественного состава тоже на такое способны. Примером могут служить различная способность метана СН 4 и этилена С 2 Н 4 реагировать с бромом и хлором. Метан способен на такие реакции только при нагревании или под ультрафиолетом. А этилен реагирует даже без освещения и нагревания.

Рассмотрим и такой вариант: качественный состав химических соединений одинаков, количественный – отличается. Тогда и химические свойства соединений различны. Как в случае с ацетиленом С 2 Н 2 и бензолом С 6 Н 6 .

Не последнюю роль в этом многообразии играют такие свойства органических веществ, «завязанные» на их строении, как изомерия и гомология.

Представьте, что у вас есть два на первый взгляд идентичных вещества – одинаковый состав и одна и та же молекулярная формула, чтобы описать их. Но строение этих веществ принципиально различно, откуда вытекает и различие химических и физических свойств. К примеру, молекулярной формулой С 4 Н 10 можно записать два различных вещества: бутан и изобутан.

Речь идет об изомерах – соединениях, которые имеют одинаковый состав и молекулярную массу. Но атомы в их молекулах расположены в различном порядке (разветвленное и неразветвленное строение).

Что касается гомологии – это характеристика такой углеродной цепи, в которой каждый следующий член может быть получен прибавлением к предыдущему одной группы СН 2 . Каждый гомологический ряд можно выразить одной общей формулой. А зная формулу, несложно определить состав любого из членов ряда. Например, гомологи метана описываются формулой C n H 2n+2 .

По мере прибавления «гомологической разницы» СН 2 , усиливается связь между атомами вещества. Возьмем гомологический ряд метана: четыре первых его члена – газы (метан, этан, пропан, бутан), следующие шесть – жидкости (пентан, гексан, гептан, октан, нонан, декан), а дальше следуют вещества в твердом агрегатном состоянии (пентадекан, эйкозан и т.д.). И чем прочнее связь между атомами углерода, тем выше молекулярный вес, температуры кипения и плавления веществ.

Какие классы органических веществ существуют?

К органическим веществам биологического происхождения относятся:

  • белки;
  • углеводы;
  • нуклеиновые кислоты;
  • липиды.

Три первых пункта можно еще назвать биологическими полимерами.

Более подробная классификация органических химических веществ охватывает вещества не только биологического происхождения.

К углеводородам относятся:

  • ациклические соединения:
    • предельные углеводороды (алканы);
    • непредельные углеводороды:
      • алкены;
      • алкины;
      • алкадиены.
  • циклические соединения:
    • соединения карбоциклические:
      • алициклические;
      • ароматические.
    • соединения гетероциклические.

Есть также иные классы органических соединений, в составе которых углерод соединяется с другими веществами, кроме водорода:

    • спирты и фенолы;
    • альдегиды и кетоны;
    • карбоновые кислоты;
    • сложные эфиры;
    • липиды;
    • углеводы:
      • моносахариды;
      • олигосахариды;
      • полисахариды.
      • мукополисахариды.
    • амины;
    • аминокислоты;
    • белки;
    • нуклеиновые кислоты.

Формулы органических веществ по классам

Примеры органических веществ

Как вы помните, в человеческом организме различного рода органические вещества – основа основ. Это наши ткани и жидкости, гормоны и пигменты, ферменты и АТФ, а также многое другое.

В телах людей и животных приоритет за белками и жирами (половина сухой массы клетки животных это белки). У растений (примерно 80% сухой массы клетки) – за углеводами, в первую очередь сложными – полисахаридами. В том числе за целлюлозой (без которой не было бы бумаги), крахмалом.

Давайте поговорим про некоторые из них подробнее.

Например, про углеводы . Если бы можно было взять и измерить массы всех органических веществ на планете, именно углеводы победили бы в этом соревновании.

Они служат в организме источником энергии, являются строительными материалами для клеток, а также осуществляют запас веществ. Растениям для этой цели служит крахмал, животным – гликоген.

Кроме того, углеводы очень разнообразны. Например, простые углеводы. Самые распространенные в природе моносахариды – это пентозы (в том числе входящая в состав ДНК дезоксирибоза) и гексозы (хорошо знакомая вам глюкоза).

Как из кирпичиков, на большой стройке природы выстраиваются из тысяч и тысяч моносахаридов полисахариды. Без них, точнее, без целлюлозы, крахмала, не было бы растений. Да и животным без гликогена, лактозы и хитина пришлось бы трудно.

Посмотрим внимательно и на белки . Природа самый великий мастер мозаик и пазлов: всего из 20 аминокислот в человеческом организме образуется 5 миллионов типов белков. На белках тоже лежит немало жизненно важных функций. Например, строительство, регуляция процессов в организме, свертывание крови (для этого существуют отдельные белки), движение, транспорт некоторых веществ в организме, они также являются источником энергии, в виде ферментов выступают катализатором реакций, обеспечивают защиту. В деле защиты организма от негативных внешних воздействий важную роль играют антитела. И если в тонкой настройке организма происходит разлад, антитела вместо уничтожения внешних врагов могут выступать агрессорами к собственным органам и тканям организма.

Белки также делятся на простые (протеины) и сложные (протеиды). И обладают присущими только им свойствами: денатурацией (разрушением, которое вы не раз замечали, когда варили яйцо вкрутую) и ренатурацией (это свойство нашло широкое применение в изготовлении антибиотиков, пищевых концентратов и др.).

Не обойдем вниманием и липиды (жиры). В нашем организме они служат запасным источником энергии. В качестве растворителей помогают протеканию биохимических реакций. Участвуют в строительстве организма – например, в формировании клеточных мембран.

И еще пару слов о таких любопытных органических соединениях, как гормоны . Они участвуют в биохимических реакциях и обмене веществ. Такие маленькие, гормоны делают мужчин мужчинами (тестостерон) и женщин женщинами (эстроген). Заставляют нас радоваться или печалиться (не последнюю роль в перепадах настроения играют гормоны щитовидной железы, а эндорфин дарит ощущение счастья). И даже определяют, «совы» мы или «жаворонки». Готовы вы учиться допоздна или предпочитаете встать пораньше и сделать домашнюю работу перед школой, решает не только ваш распорядок дня, но и некоторые гормоны надпочечников.

Заключение

Мир органических веществ по-настоящему удивительный. Достаточно углубиться в его изучение лишь немного, чтобы у вас захватило дух от ощущения родства со всем живым на Земле. Две ноги, четыре или корни вместо ног – всех нас объединяет волшебство химической лаборатории матушки-природы. Оно заставляет атомы углерода объединяться в цепочки, вступать в реакции и создавать тысячи таких разнообразных химических соединений.

Теперь у вас есть краткий путеводитель по органической химии. Конечно, здесь представлена далеко не вся возможная информация. Какие-то моменты вам, быть может, придется уточнить самостоятельно. Но вы всегда можете использовать намеченный нами маршрут для своих самостоятельных изысканий.

Вы также можете использовать приведенное в статье определение органического вещества, классификацию и общие формулы органических соединений и общие сведения о них, чтобы подготовиться к урокам химии в школе.

Расскажите нам в комментариях, какой раздел химии (органическая или неорганическая) нравится вам больше и почему. Не забудьте «расшарить» статью в социальных сетях, чтобы ваши одноклассники тоже смогли ею воспользоваться.

Пожалуйста, сообщите, если обнаружите в статье какую-то неточность или ошибку. Все мы люди и все мы иногда ошибаемся.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Существует несколько определений, что такое органические вещества, чем они отличаются от другой группы соединений — неорганических. Одно из наиболее распространенных объяснений вытекает из названия «углеводороды». Действительно, в основе всех органических молекул находятся цепочки атомов углерода, связанные с водородом. Присутствуют и другие элементы, получившие наименование «органогенные».

Органическая химия до открытия мочевины

Издавна люди пользуются многими природнымие веществами и минералами: серой, золотом, железной и медной рудой, поваренной солью. За все время существования науки — с древнейших времен и до первой половины XIX века — ученые не могли доказать связь живой и неживой природы на уровне микроскопического строения (атомов, молекул). Считалось, что своим появлением органические вещества обязаны мифической жизненной силе — витализму. Бытовал миф о возможности вырастить человечка «гомункулуса». Для этого надо было сложить в бочонок разные продукты жизнедеятельности, подождать определенное время, пока зародится жизненная сила.

Сокрушительный удар по витализму нанесли работы Веллера, который синтезировал органическое вещество мочевину из неорганических компонентов. Так было доказано, что никакой жизненной силы нет, природа едина, организмы и неорганические соединения образованы атомами одних и тех же элементов. Состав мочевины был известен и до работ Веллера, изучение этого соединения не составляло в те годы большого труда. Замечательным был сам факт получения вещества, характерного для обмена веществ, вне тела животного или человека.

Теория А. М. Бутлерова

Велика роль русской школы химиков в становлении науки, изучающей органические вещества. С именами Бутлерова, Марковникова, Зелинского, Лебедева связаны целые эпохи в развитии органического синтеза. Основоположником теории строения соединений является А. М. Бутлеров. Знаменитый ученый-химик в 60-х годах XIX века объяснил состав органических веществ, причины многообразия их строения, вскрыл взаимосвязь, существующую между составом, строением и свойствами веществ.

На основе выводов Бутлерова удалось не только систематизировать знания об уже существующих органических соединениях. Появилась возможность предсказать свойства еще не известных науке веществ, создать технологические схемы для их получения в промышленных условиях. В полной мере воплощаются в жизнь многие идеи ведущих химиков-органиков в наши дни.

При окислении углеводородов получаются новые органические вещества — представители других классов (альдегидов, кетонов, спиртов, карбоновых кислот). Например, большие объемы ацетилена идут на производство уксусной кислоты. Часть этого продукта реакции в дальнейшем расходуется для получения синтетических волокон. Раствор кислоты (9% и 6%) есть в каждом доме — это обычный уксус. Окисление органических веществ служит основой для получения очень большого числа соединений, имеющих промышленное, сельскохозяйственное, медицинское значение.

Ароматические углеводороды

Ароматичность в молекулах органических веществ — это присутствие одного или нескольких бензольных ядер. Цепочка из 6 атомов углерода замыкается в кольцо, в нем возникает сопряженная связь, поэтому свойства таких углеводородов не похожи на другие УВ.

Ароматические углеводороды (или арены) имеют огромное практическое значение. Широко применяются многие из них: бензол, толуол, ксилол. Они используются как растворители и сырье для производства лекарств, красителей, каучука, резины и других продуктов органического синтеза.

Кислородосодержащие соединения

В составе большой группы органических веществ присутствуют атомы кислорода. Они входят в наиболее активную часть молекулы, ее функциональную группу. Спирты содержат одну или несколько гидроксильных частиц —ОН. Примеры спиртов: метанол, этанол, глицерин. В карбоновых кислотах присутствует другая функциональная частица — карбоксил (—СОООН).

Другие кислородосодержащие органические соединения — альдегиды и кетоны. Карбоновые кислоты, спирты и альдегиды в больших количествах присутсвуют в составе разных органов растений. Они могут быть источниками для получения натуральных продуктов (уксусной кислоты, этилового спирта, ментола).

Жиры являются соединениями карбоновых кислот и трехатомного спирта глицерина. Кроме спиртов и кислот линейного строения, есть органические соединения с бензольным кольцом и функциональной группой. Примеры ароматических спиртов: фенол, толуол.

Углеводы

Важнейшие органические вещества организма, входящие в состав клеток, — белки, ферменты, нуклеиновые кислоты, углеводы и жиры (липиды). Простые углеводы — моносахариды — встречаются в клетках в виде рибозы, дезоксирибозы, фруктозы и глюкозы. Последний в этом коротком списке углевод — основное вещество обмена веществ в клетках. Рибоза и дезоксирибоза — составные части рибонуклеиновой и дезоксирибонуклеиновой кислот (РНК и ДНК).

При расщеплении молекул глюкозы выделяется энергия, необходимая для жизнедеятельности. Сначала она запасается при образовании своеобразного переонсчика энергии — аденозинтрифосфорной кислоты (АТФ). Это вещество переносится кровью, доставляется в ткани и клетки. При последовательном отщеплении от аденозина трех остатков фосфорной кислоты энергия освобождатеся.

Жиры

Липиды — вещества живых организмов, обладающие специфическими свойствами. Они не растворяются в воде, являются гидрофобными частицами. Особенно богаты веществами этого класса семена и плоды некоторых растений, нервная ткань, печень, почки, кровь животных и человека.

Кожа человека и животных содержит множество мелких сальных желез. Выделяемый ими секрет выводится на поверхность тела, смазывает ее, защищает от потери влаги и проникновения микробов. Слой подкожной жировой клетчатки оберегает от повреждений внутренние органы, служит запасным веществом.

Белки

Протеины составляют более половины всех органических веществ клетки, в некоторых тканях их содержание доходит до 80%. Для всех видов белков характерные высокие молекулярные массы, наличие первичной, вторичной, третичной и четвертичной структур. При нагревании они разрушаются — происходит денатурация. Первичная структура — это огромная для микромира цепочка аминокислот. Под действием особых ферментов в пищеварительной системе животных и человека протеиновая макромолекула распадется на составные части. Они попадают в клетки, где происходит синтез органических веществ — других белков, специфичных для каждого живого существа.

Ферменты и их роль

Реакции в клетке протекают со скоростью, которая в производственных условиях трудно достижима, благодаря катализаторам — ферментам. Различают ферменты, действующие только на белки, — липазы. Гидролиз крахмала происходит с участием амилазы. Для разложения на составные части жиров необходимы липазы. Процессы с участием ферментов идут вов всех живых организмах. Если у человека нет в клетках какого-либо фермента, то это сказывается на обмене веществ, в целом на здоровье.

Нуклеиновые кислоты

Вещества, впервые обнаруженные и выделенные из ядер клеток, выполняют функцию передачи наследственных признаков. Основное количество ДНК содержится в хромосомах, а молекулы РНК расположены в цитоплазме. При редупликации (удвоении) ДНК появляется возможность передать наследственную информацию половым клеткам — гаметам. При их слиянии новый организм получает генетический материал от родителей.

Классификация органических веществ еще более сложна. Это обусловлено целым рядом причин: чрезвычайной многочисленностью органических соединений, сложностью и разнообразием их строения, самой историей изучения соединений углерода.
Действительно, до середины XIX в. органическая химия, по образному выражению Ф.Велера*, представлялась «дремучим лесом, полным удивительных вещей, безграничной чащей, из которой нельзя выбраться, куда не осмеливаешься проникнуть». Только с появлением в 1861 г. теории химического строения органических соединений «дремучий лес»
органической химии стал преобразовываться в залитый солнечным светом регулярный парк со строгой сеткой аллей и дорожек. Авторами этой теории явилось выдающееся интернациональное трио ученых-химиков: наш соотечественник А.М.Бутлеров**, немец Ф.А.Кекуле и англичанин А.Купер.

Рис. 5. Фридрих Велер
(1800–1882)


Рис. 6. Александр
Михайлович Бутлеров
(1828–1886)

Сущность созданной ими теории химического строения можно сформулировать в виде трех положений.
1. Атомы в молекулах соединены в определенном порядке согласно их валентности, причем углерод в органических соединениях четырехвалентен.
2. Свойства веществ определяются не только качественным и количественным элементным составом, но и порядком связи атомов в молекулах, т.е. химическим строением.
3. Атомы в молекулах оказывают друг на друга взаимное влияние, что отражается на свойствах веществ.
* Немецкий химик. Проводил исследования в области неорганической и органической химии. Установил существование явления изомерии, впервые осуществил синтез органического вещества (мочевины) из неорганического. Получил некоторые металлы (алюминий, бериллий и др.).
** Выдающийся русский химик, автор теории химического
строения органических веществ. На основании по
нятия о строении объяснил явление изомерии, предсказал существование изомеров ряда веществ и впервые их синтезировал. Первым осуществил синтез сахаристого вещества. Создатель школы русских хим иков, в которую входили В.В.Марковников, А.М.Зайцев, Е.Е.Вагнер, А.Е.Фаворский и др.

Сегодня кажется невероятным, что до середины XIX в., в период великих открытий в естествознании, ученые плохо представляли себе внутреннее устройство вещества. Именно Бутлеров ввел термин «химическое строение», подразумевая под ним систему химических связей между атомами в молекуле, их взаимное расположение в пространстве. Благодаря такому пониманию строения молекулы оказалось возможным объяснить явление изомерии, предсказать существование неизвестных изомеров, соотнести свойства веществ с их химическим строением. В качестве иллюстрации явления изомерии приведем формулы и свойства двух веществ – этилового спирта и диметилового эфира, имеющих одинаковый элементный состав С2Н6О, но различное химическое строение (табл. 2).
Таблица 2


Иллюстрация зависимости свойств вещества от его строения


Явление изомерии, очень широко распространенное в органической химии, является одной из причин многообразия органических веществ. Другая причина многообразия органических веществ заключается в уникальной способности атома углерода образовывать друг с другом химические связи, в результате чего получаются углеродные цепи
различной длины и строения: неразветвленные, разветвленные, замкнутые. Например, четыре атома углерода могут образовать такие цепи:


Если учесть, что между двумя атомами углерода могут существовать не только простые (одинарные) связи С–С, но также двойные С=С и тройные С≡С, то число вариантов углеродных цепей и, следовательно, различных органических веществ значительно увеличивается.
На теории химического строения Бутлерова основана и классификация органических веществ. В зависимости от того, атомы каких химических элементов входят в состав молекулы, все органичебольших групп: углеводороды, кислородсодержащие, азотсодержащие соединения.
Углеводородами называются органические соединения, состоящие только из атомов углерода и водорода.
По строению углеродной цепи, наличию или отсутствию в ней кратных связей все углеводороды делятся на несколько классов. Эти классы представлены на схеме 2.
Если углеводород не содержит кратных связей и цепь углеродных атомов не замкнута, он относится, как вы знаете, к классу предельных углеводородов, или алканов. Корень этого слова имеет арабское происхождение, а суффикс -ан присутствует в названиях всех углеводородов этого класса.
Схема 2


Классификация углеводородов


Наличие в молекуле углеводорода одной двойной связи позволяет отнести его к классу алкенов, причем его отношение к этой группе веществ подчеркивается
суффиксом -ен в названии. Простейшим алкеном является этилен, имеющий формулу CН2=СН2. Двойных связей С=С в молекуле может быть две, в этом случае вещество относится к классу алкадиенов.
Попытайтесь сами пояснить значение суффиксов -диен. Например, бутадиен-1,3 имеет структурную формулу: CН2=СН–CН=СН2.
Углеводороды с тройной углерод-углеродной связью в молекуле называют алкинами. На принадлежность к этому классу веществ указывает суффикс -ин. Родоначальником класса алкинов выступает ацетилен (этин), молекулярная формула которого С2Н2, а структурная – НС≡СН. Из соединений с замкнутой цепочкой углеродных
атомов важнейшими являются арены – особый класс углеводородов, название первого представителя которых вы наверняка слышали – это бензол С6Н6, структурная формула которого также известна каждому культурному человеку:


Как вы уже поняли, помимо углерода и водорода, в состав органических веществ могут входить атомы других элементов, в первую очередь кислорода и азота. Чаще всего атомы этих элементов в различных сочетаниях образуют группы, которые называют функциональными.
Функциональной группой называют группу атомов, определяющую наиболее характерные химические свойства вещества и его принадлежность к определенному классу соединений.
Основные классы органических соединений, содержащих функциональные группы, представлены на схеме 3.
Схема 3
Основные классы органических веществ, содержащих функциональные группы


Функциональная группа –ОН называется гидроксильной и определяет принадлежность к одному из важнейших классов органических веществ – спиртам.
Названия спиртов образуются с помощью суффикса -ол. Например, наиболее известный представитель спиртов – это этиловый спирт, или этанол, С2Н5ОН.
Атом кислорода может быть связан с атомом углерода двойной химической связью. Группа >C=O называется карбонильной. Карбонильная группа входит в состав нескольких
функциональных групп, в том числе альдегидной и карбоксильной. Органические вещества, содержащие эти функциональные группы, называются, соответственно, альдегидами и карбоновыми кислотами. Наиболее известные представители альдегидов – это формальдегид НСОН и уксусный альдегид СН3СОН. С уксусной кислотой СН3СООН, раствор которой называется столовым уксусом, наверняка знаком каждый. Отличительным структурным признаком азотсодержащих органических соединений, и, в первую очередь, аминов и аминокислот является присутствие в их молекулах аминогруппы –NH2.
Приведенная классификация органических веществ также весьма относительна. Подобно тому, как в одной молекуле (например, алкадиенов) может содержаться две кратные связи, вещество может быть обладателем двух и даже более функциональных групп. Так, структурными единицами главных носителей жизни на земле – белковых молекул – являются аминокислоты. В молекулах этих веществ обязательно присутствуют как минимум две функциональные группы – карбоксильная иаминогруппа. Простейшая аминокислота называется глицин и имеет формулу:


Подобно амфотерным гидроксидам, аминокислоты сочетают в себе свойства кислот (за счет карбоксильной группы) и оснований (благодаря наличию в молекуле аминогруппы).
Для организации жизни на Земле амфотерные свойства аминокислот имеют особое значение – за счет взаимодействия аминогрупп и карбоксильных групп аминокис-
лоты соединяются в полимерные цепочки белков.
? 1. Назовите основные положения теории химического строения А.М.Бутлерова. Какую роль эта теория сыграла в развитии органической химии?
2. Какие классы углеводородов вам известны? По какому признаку проведена эта классификация?
3. Что называется функциональной группой органического соединения? Какие функциональные группы вы можете назвать? Какие классы органических соединений содержат названные функциональные группы? Запишите общие формулы классов соединений и формулы их представителей.
4. Дайте определение изомерии, запишите формулы возможных изомеров для соединений состава С4H10O. С помощью различных источников информации дайте названия каждому из них и приготовьте сообщение об одном из соединений.
5. Отнесите вещества, формулы которых: С6Н6, С2Н6, С2Н4, НСООН, СН3ОН, С6Н12О6, к соответствующим классам органических соединений. С помощью различных источников информации дайте названия каждому из них и приготовьте сообщение об одном из соединений.
6. Структурная формула глюкозы:К какому классу органических соединений вы отнесете это вещество? Почему его называют соединением с двойственной функцией?
7. Сравните органические и неорганические амфотерные соединения.
8. Почему аминокислоты относят к соединениям с двойственной функцией? Какую роль в организации жизни на Земле играет эта особенность строения аминокислот?
9. Приготовьте сообщение на тему «Аминокислоты – "кирпичики” жизни», используя возможности Интернета.
10. Приведите примеры относительности деления органических соединений на определенные классы. Проведите параллели подобной относительности для неорганических соединений.

Видеоурок:

Лекция: Классификация органических веществ. Номенклатура органических веществ (тривиальная и международная)


Классификация органических веществ


В основе классификации органических веществ лежит теория А.М. Бутлерова. В таблице показана классификация органических веществ в зависимости от типа строения углеродной цепи, т.е. по типу углеродного скелета:

Ациклические соединения - это органические вещества, в молекулах которых атомы углерода соединены друг с другом в прямые, а так же разветвленные открытые цепи.

К ациклическим, например, относится этан:

или ацетилен:


Иначе подобные соединения называются алифатическими или соединениями жирного ряда, потому что первые соединения данного ряда органических веществ были получены из растительных или животных жиров. Из ациклических соединений выделяются:

    Предельные (или насыщенные) - данные соединения содержат в углеродном скелете одинарные ковалентные неполярные углерод-углеродные С-С и слабополярные С-Н связи, это алканы .

Общая молекулярная формула алканов - C n H 2n+2 , где n - количество атомов углерода в молекуле углеводорода. К ним относятся открытые цепи, а также замкнутые (циклические) углеводороды. Все атомы углерода в алканах имеют sp 3 - гибридизацию . Запомните следующие алканы:

Метан - СH 4

Этан - C 2 H 6: CH 3 -CH 3

Пропан - C 3 H 8: CH 3 -CH 2 -CH 3

Бутан - C 4 H 10: CH 3 -(CH 2) 2 -CH 3

Пентан - C 5 H 12: CH 3 -(CH 2) 3 -CH 3

Гексан - C 6 H 14: CH 3 -(CH 2) 4 -CH 3

Гептан - C 7 H 16: CH 3 -(CH 2) 5 -CH 3

Октан - C 8 H 18: CH 3 -(CH 2) 6 -CH 3

Нонан - C 9 H 20: CH 3 -(CH 2) 7 -CH 3

Декан - C 10 H 22: CH 3 -(CH 2) 8 -CH 3

    Непредельные (или ненасыщенные) - содержат кратные - двойные (С=С) или тройные (С≡С) связи, это алкены, алкины и алкадиены:

1) А лкены - содержат одну углерод-углеродную связь, которая является двойной C=C. Общая формула - C n H 2n . Атомы углерода в данных соединениях имеют sp 2 - гибридизацию . Связь C=C имеет π-связь и σ-связь, поэтому алкены более химически активны, чем алканы. Запомните следующие алкены:

Этен (этилен) - C 2 H 4: CH 2 =CH 2

Пропен (пропилен) - C 3 H 6: СН 2 =СН-СН 3

Бутен - С 4 Н 8: бутен-1 СН 3 -СН 2 -СН=СН, бутен-2 СН 3 -СН=СН-СН 3 , изобутен [СН 3 ] 2 С=СН 2

Пентен - C 5 H 10: 1-пентен CH 3 -CH 2 -CH 2 -CH=CH 2 , 2-пентен C 2 H 5 CH=CHCH 3

Гексен - C 6 H 12: 1-гексен CH 2 =CH-CH 2 -CH 2 -CH 2 -CH 3 , цис- гексен-2 CH 3 -CH=CH-CH 2 -CH 2 -CH 3 и другие изомеры.

Гептен - C 7 H 14: 1-гептен СН 2 =СН-СН 2 -СН-СН 2 -СН 2 -СН 3 , 2-гептен СН 3 -СН=СН-СН 2 -СН 2 -СН 2 -СН 3 и др.

Октен - C 8 H 16: 1-октен СН 2 =СН-СН 2 -СН 2 -СН 2 -СН 2 -СН 2 -СН 3 , 2-октен СН 3 -СН=СН-СН 2 -СН 2 -СН 2 -СН 2 -СН 3 и др.

Нонен - C 9 H 18: 3-нонен CH 3 -CH 2 -CH=CH-CH 2 -CH 2 -CH 2 -CH 2 -CH 3 , 5-нонен CH 3 -CH 2 -CH 2 -CH 2 -CH=CH-CH 2 -CH 2 -CH 3 и др.

Децен - C 10 H 20: 2-децен СН 3 -СН 2 -СН 2 -СН 2 -СН 2 -СН 2 -СН 2 -СН=СН-СН 3 и др.

Как вы заметили, названия алкенов схожи с названиями алканов, с разницей суффикса. Названия алканов имеют суффикс -ан , а алкенов суффикс -ен . Кроме того среди перечисленных алкенов отсутствует метен. Запомните, метена не существует, потому что метан имеет только один углерод. А для образования алкенов, обязательно образование двойных связей.

Местоположение двойной связи обозначается цифрой, например, 1-бутен: СН 2 =СН–СН 2 –СН 3 или 1-гексен: СН 3 –СН 2 –СН 2 –СН 2 –СН=СН 2 . Обратите внимание на данное правило: нумерация углеводородных цепей должна производиться так, чтобы двойные связи находились под наименьшим номером, например, 2-гексен:

2) А лкины – в молекулах присутствует одна тройная С≡С связь. Общая формула - C n H 2n-2 . В названиях алкинов суффикс -ан заменен на -ин. Например, 3-гептин: СН 3 –СН 2 –СН 2 –С≡С–СН 2 –СН 3 . Для этина НС≡СН возможно и тривиальное название ацетилен. Указание положения тройной связи производится также как в предыдущем случае с алкенами. Если в соединении тройных связей больше одной, то к названию прибавляется суффикс -диин или -триин . Если же в соединении присутствуют и двойные, и тройные связи, то их нумерацию определяет двойная связь, следовательно, называют сначала двойную, затем тройную связи. Например, гексадиен-1,3-ин-5: СН 2 =СН–СН 2 =СН 2 –С≡СН.

3) А л кадиены – в молекулах присутствуют две двойные С=С связи. Общая формула - C n H 2n-2, такая же, как и у алкинов. Алкины и алкадиены относятся к межклассовым изомерам. К примеру, 1,3-бутадиен или дивинил C 4 H 6: СН 2 =СН-СН=СН 2 .

Циклические соединения - это органические вещества , в молекулах которых содержится три или более связанных в замкнутое кольцо атомов, образующих циклы.

Предельные циклические углеводороды называются циклоалканами. Их о бщая формула - C n H 2n . В молекулах имеется замкнутая цепь или кольца. К примеру, циклопропан (C 3 H 6):


и циклобутан (C 4 H 8):


В зависимости от того, какими атомами были образованы циклы, данный вид соединений подразделяется на карбоциклические и гетероциклические.

Карбоциклические , которые иначе называются гомоциклическими, содержат в циклах только атомы углерода. В свою очередь, они делятся на алифатические и ароматические.

    Алициклические (алифатические) соединения отличаются тем, что атомы углерода могут соединяться между собой в прямые, разветвлённые цепочки или кольца одинарными, двойными или тройными связями.

Типичным алифатическим соединением является циклогексен:

    Ароматические соединения получили свое название благодаря ароматному запаху вещества. Иначе называются аренами. Они отличаются наличием в соединении бензольного кольца:

Таких колец в составе может быть несколько. Например, нафталин:


Также данная группа соединений имеет в составе ароматическую систему, что характеризует высокую устойчивость и стабильность соединения. Ароматичная система, содержит в кольце 4n+2 электронов (где n = 0, 1, 2, …). Данной группе органических веществ свойственно вступать в реакции замещения, а не присоединения.

Ароматические соединения могут иметь функциональную группу, прикрепленную непосредственно к кольцу. Например, толуол:


Гетероциклические соединения всегда содержат в составе углеводородного цикла один или несколько гетероатомов, которыми являются атомы кислорода, азота или серы. Если гетероатомов пять, то соединения называются пятичленными, если шесть, соответственно шестичленными. Примером гетероциклического соединения является пиридин:



Классификация производных углеводорода


Другие органические вещества рассматривают исключительно как производные углеводородов, которые образуются при введении в молекулы углеводородов функциональных групп, включающих в себя другие химические элементы. Формулу соединений, имеющих одну функциональную группу, можно записать как R - X . Где R – углеводородный радикал (фрагмент молекулы углеводорода без одного или нескольких атомов водорода; Х – функциональная группа. По наличию функциональных групп углеводороды подразделяются на:

    Галогенпроизводные - судя из названия ясно, что в данных соединениях атомы водорода замещены на атомы какого-либо галогена.

    Спирты и фенолы. В спиртах атомы водорода замещены на гидроксильную группу -OH. По количеству таких групп, спирты подразделяются на одноатомные и многоатомные, среди которых двухатомные, трехатомные и т.д.

Формула одноатомных спиртов: C n H 2n +1OH или C n H 2n +2O .

Формула многоатомных спиртов: C n H 2n +2O x ; x – атомность спирта.

Спирты могут быть и ароматическими. Формула одноатомных ароматических спиртов: C n H 2n -6O .

Следует помнить, что производные ароматических углеводородов, в которых на гидроксильные группы заменены один/несколько атомов водорода не относятся к спиртам. Данный тип относят к классу фенолов. Причина, по которой фенолы не относят к спиртам, содержится в их специфических химических свойствах. Одноатомные фенолы изомерны одноатомным ароматическим спиртам. То есть они так же имеют общую молекулярную формулу C n H 2n -6O .

    Амины - производные аммиака, в которых один, два или три атома водорода заменены на углеводородный радикал. Амины, в которых только один атом водорода замещен на углеводородный радикал, то есть имеющие общую формулу R-NH 2 , именуют первичными аминами. Амины, в которых, два атома водорода заменены на углеводородные радикалы, именуют вторичными. Их формула - R-NH-R’ . Следует помнить, что радикалы R и R’ могут быть как одинаковые, так и разные. Если все три атома водорода молекулы аммиака замещены на углеводородный радикал, то амины являются третичными. При этом R, R’, R’’ могут быть как полностью одинаковыми, так и разными. Общая формула первичных, вторичных и третичных предельных аминов - C n H 2n +3N . Ароматические амины с одним непредельным заместителем имеют формулу C n H 2n -5N.

    Альдегиды и кетоны. У альдегидов при первичном атоме углерода два атома водорода замещены на один атом кислорода. То есть в их структуре имеется альдегидная группа – СН=О. Общая формула - R-CH=O . У кетонов при вторичном атоме углерода два атома водорода замещены на атом кислорода. То есть это соединения, в структуре которых есть карбонильная группа –C(O)-. Общая формула кетонов: R-C(O)-R ’. При этом радикалы R, R’ могут быть как одинаковыми, так и разными. Альдегиды и кетоны достаточно схожи по строению, но их все-таки различают как классы, так как они имеют существенные различия в химических свойствах. Общая формула предельных кетонов и альдегидов имеет вид: C n H 2n O .

    Карбоновые кислоты содержат карбоксильную группу –COOH. В случае, когда кислота содержит две карбоксильные группы, такую кислоту именуют дикарбоновой кислотой. Предельные монокарбоновые кислоты (с одной группой -COOH) имеют общую формулу - C n H 2n O 2 . Ароматические монокарбоновые кислоты имеют общую формулу C n H 2n -8O 2 .

    Простые эфиры – органические соединения, в которых два углеводородных радикала опосредованно соединены через атом кислорода. То есть, имеют формулу вида: R-O-R’ . При этом радикалы R и R’ способны быть как одинаковыми, так и разными. Формула предельных простых эфиров - C n H 2n +1OH или C n H 2n +2О .

    Сложные эфиры – класс соединений на основе органических карбоновых кислот, у которых атом водорода в гидроксильной группе заменен на углеводородный радикал R.

    Нитросоединения – производные углеводородов, в которых один или несколько атомов водорода замещены на нитрогруппу –NO 2 . Предельные нитросоединения с одной нитрогруппой имеют формулу C n H 2n +1NO 2 .

    Аминокислоты имеют в структуре одновременно две функциональные группы – амино NH 2 и карбоксильную – COOH. Например: NH 2 -CH 2 -COOH. Предельные аминокислоты, имеющие одну карбоксильную и одну аминогруппу изомерны соответствующим предельными нитросоединениям то есть, имеют общую формулу C n H 2n +1NO 2 .

Номенклатура органических соединений

Номенклатура соединения делится на 2 типа:

    тривиальную и

    систематическую.

Тривиальная - это исторически первая номенклатура, возникшая в самом начале развития органической химии. Названия веществ носили ассоциативный характер, например, щавелевая кислота, мочевина, индиго.

Создание систематической, т.е. международной номенклатуры началось с 1892 года. Тогда была начата Женевская номенклатура, которую с 1947 и по сегодняшний день продолжает ИЮПАК (IUPAC - международная единая химическая номенклатура). Согласно систематической номенклатуре названия органических соединений составляются из корня, обозначающего длину основной цепи, т.е. соединенных в неразветвленную цепь атомов углеродов, а также приставок и суффиксов, обозначающих наличие и расположение заместителей, функциональных групп и кратных связей.

Систематическая номенклатура алканов
Систематическая номенклатура алкенов

В истории развития органической химии выделяют два периода: эмпирический (с середины XVII до конца XVIII века), в который познание органических веществ, способов их выделения и переработки происходило опытным путем и аналитический (конец XVIII – середина XIX века), связанный с появлением методов установления состава органических веществ. В аналитический период было установлено, что все органические вещества содержат углерод. Среди, других элементов, входящих в состав органических соединений были обнаружены водород, азот, сера, кислород и фосфор.

Важное значение в истории органической химии имеет структурный период (вторая половина XIX – начало XX века), ознаменовавшийся рождением научной теории строения органических соединений, основоположником которой был А.М. Бутлеров.

Основные положения теории строения органических соединений:

  • атомы в молекулах соединены между собой в определенном порядке химическими связями в соответствии с их валентностью. Углерод во всех органических соединениях четырехваленнтен;
  • свойства веществ зависят не только от их качественного и количественного состава, но и от порядка соединения атомов;
  • атомы в молекуле взаимно влияют друг на друга.

Порядок соединения атомов в молекуле описывается структурной формулой, в которой химические связи изображаются черточками.

Характерные свойства органических веществ

Существует несколько важных свойств, которые выделяют органические соединения в отдельный, ни на что не похожий класс химических соединений:

  1. Органические соединения обычно представляют собой газы, жидкости или легкоплавкие твердые вещества, в отличие неорганических соединений, которые в большинстве своём представляют собой твердые вещества с высокой температурой плавления.
  2. Органические соединения большей частью построены ковалентно, а неорганические соединения - ионно.
  3. Различная топология образования связей между атомами, образующими органические соединения (прежде всего, атомами углерода), приводит к появлению изомеров - соединений, имеющих один и тот же состав и молекулярную массу, но обладающих различными физико-химическими свойствами. Данное явление носит название изомерии.
  4. Явление гомологии - существование рядов органических соединений, в которых формула любых двух соседей ряда (гомологов) отличается на одну и ту же группу - гомологическую разницу CH 2 . Органические вещества горят.

Классификация органических веществ

В классификации принимают за основу два важных признака – строение углеродного скелета и наличие в молекуле функциональных групп.

В молекулах органических веществ атомы углерода соединяются друг с другом, образуя т.н. углеродный скелет или цепь. Цепи бывают открытыми и замкнутыми (циклическими), открытые цепи могут быть неразветвленными (нормальными) и разветвленными:

По строению углеродного скелета различают:

— алициклические органические вещества, имеющие открытую углеродную цепь как разветвленную, так и неразветвленную. Например,

СН 3 -СН 2 -СН 2 -СН 3 (бутан)

СН 3 -СН(СН 3)-СН 3 (изобутан)

— карбоциклические органические вещества, в которых углеродная цепь замкнута в цикл (кольцо). Например,

— гетероциклические органические соединения, содержащие в цикле не только атомы углерода, но и атомы других элементов, чаще всего азота, кислорода или серы:

Функциональная группа – атом или группа атомов неуглеводородного характера, которые определяют принадлежность соединения к определенному классу. Признаком, по которому органическое вещество относят к тому или иному классу, является природа функциональной группы (табл. 1).

Таблица 1. Функциональные группы и классы.


Соединения могут содержать не одну, а несколько функциональных групп. Если эти группы одинаковые, то соединения называют полифункциональными, например хлороформ, глицерин. Соединения, содержащие различные функциональные группы, называют гетерофункциональными, их можно одновременно отнести к нескольким классам соединений, например молочную кислоту можно рассматривать, как карбоновую кислоту и как спирт, а коламин – как амин и спирт.