Уравнение циолковского. Научная основа полетов в космос (применение формулы Циолковского)

ГБОШИ РФМЛИ.

Научный руководитель: , доцент СОГУ.

Заслуга Циолковского не в формуле, а в том, что он первый увидел в ней возможность выхода человека в мировое пространство.

Предисловие.

Мысль о путешествиях на другие планеты, о странствии в межзвездных пустынях еще недавно была только мечтой. Но сейчас нет уже сомнений, что, подобно тому, как авиация из заманчивой грезы превратилась в повседневную действительность, так и в недалеком будущем осуществится мысль о полетах в дальний космос.

Рождение космонавтики, как науки, произошло в 1987 году. В этом году была опубликована магистерская диссертация, содержащая фундаментальное уравнение динамики тел переменной массы. Уравнение Мещерского дало космонавтике «вторую жизнь»: теперь в распоряжении ракетостроителей появились точные формулы, которые позволяли создавать ракеты, основываясь не на опыте предыдущих наблюдении, а на точных математических расчетах.

Но наибольшую известность в космонавтики получило не уравнение Мещерского, а уравнение Циолковского. Оно представляет собой частный случай уравнения Мещерского.

можно назвать отцом космонавтики. Он был первым, кто увидел в ракете средство для покорения человеком космоса. До Циолковского на ракету смотрели как на игрушку для развлечений или как на один из видов оружия. Заслуга состоит в том, что он теоретически обосновал возможность покорения космоса при помощи ракет, вывел формулу скорости движения ракеты, указал на критерии выбора топлива для ракет, дал первые схематические чертежи космических кораблей, привёл первые расчеты движения ракет в поле тяготения Земли и впервые указал на целесообразность создания на орбитах вокруг Земли промежуточных станций для полётов на другие тела Солнечной системы.

Цели и задачи данной работы:

1. Получить нерелятивистское уравнение реактивного движения.

2. Получить уравнение реактивного движения в гравитационном поле.

3. Получить релятивистское уравнение реактивного движения.

4. Вычислить коэффициент полезного действия ракеты.

5. Изучить принцип работы фотонного двигателя. Получить уравнение, описывающее движение фотонной ракеты.

Реактивное движение.

Среди великих технических и научных достижений XX века одно из первых мест, несомненно, принад­лежит ракетам и теории реактивного движения. Годы второй мировой войны привели к быстрому совершенствованию конструкций реак­тивных аппаратов. На полях сражений появились пороховые ракеты, но уже на более калорийном бездым­ном тротил-пироксилиновом порохе («катюши»). Были созданы самолеты с воздушно-реактивными двигателями, беспилотные самолеты с пульсирующими воздушно-реак­тивными двигателями (Фау-1) и баллистические ракеты с дальностью полета до 300 км (Фау-2).

https://pandia.ru/text/80/345/images/image002_47.gif" width="53" height="41 src=">, тогда реактивная сила, кото­рую обозначим через , будет равна

У немецкой ракеты Фау-2 весовой секундный расход со­ставляет в среднем 127,4 кг. Скорость истечения продук­тов сгорания из сопла двигателя равна 2000 м/сек. Реак­тивная сила в этом случае равна

Приведенные примеры показывают, что реактивная сила тем больше, чем больше секундный расход топлива и чем больше относительная скорость отбрасывания частиц.

Уравнения Мещерского и Циолковского.

Уравнения движения тел с переменной массой являются следствиями законов Ньютона. Тем не менее, они представляют большой интерес, главным образом, в связи с ракетной техникой.

Принцип действия ракеты очень прост. Ракета с большой скоростью выбрасывает вещество (газы), воздействуя на него с большой силой. Выбрасываемое вещество с той же, но противоположно направленной силой, в свою очередь, действует на ракету и сообщает ей ускорение в противоположном направлении. Если нет внешних сил, то ракета вместе с выброшенным веществом является замкнутой системой. Импульс такой системы не может меняться во времени. На этом положении и основана теория движения ракет.

Получим уравнение движения материальной точки с переменной массой на примере движения ракеты, следуя изложению из . Пусть m – масса ракеты в некоторый момент времени, а v – ее скорость в тот же момент времени. Спустя время dt масса ракеты и ее скорость получат приращения dm и dv, за счет того, что будет выброшена масса газов dmгаз со скоростью vгаз. Тогда изменение суммарного импульса системы ракета плюс газы, на которую действует внешняя постоянная сила F, будет равно

(m+dm)(+d )+ dm газ – m = dt.

Учитывая, что dm газ + dm =0 и = – ( – скорость истечения газов относительно ракеты), раскрываем скобки, пренебрегаем слагаемым dmd и в итоге получаем:

md = dm + dt <=> m = + .

По форме это уравнение похоже на второй закон Ньютона. Однако масса ракеты m здесь непостоянна из-за потери вещества. К внешней силе F добавляется дополнительное слагаемое , называемое реактивной силой, с которой выброшенные газы действуют на ракету. Это есть уравнение.

Применим уравнение Мещерского для полета ракеты, когда на нее не действуют внешние силы, т. е. F=0. Тогда мы получим:

m = (1.1)

Пусть ракета движется прямолинейно в направлении, противоположном направлению движению газов. Если принять направление полета за положительное, то уравнение 1.1 в скалярной форме выглядит так:

Будем для простоты полагать, что скорость u является постоянной, тогда:

v =– u =– u + C .

Значение постоянной C можно найти из следующих соображений: в начальный момент времени скорость ракеты v=0, а ее масса m равна начальной массе m0, отсюда C= u ln m 0 . Значит,

v = u ln m 0 / m , или m = m 0 exp (- v / u ).

Полученное уравнение есть формула Циолковского. Она получена для нерелятивистских движений, т. е. для случаев, когда v и vотн очень малы по сравнению со скоростью света. Но ее можно обобщить на случай движения со скоростями, близкими к скорости света.

Обозначим за v и m – масса покоя и скорость ракеты в произвольный момент времени, mгаз и vгаз – те же величины для газов, образовавшихся из ракеты к этому моменту времени. Газы, уже покинувшие ракету, на ее движение влияния не оказывают, поэтому можно будет принять mгаз=0. Но газы образуются непрерывно, поэтому dmгаз≠0. Запишем законы сохранения импульса и энергии:

+ = const ,

+ = const .

Дифференцируя 1-ое уравнение, учитывая 2-ое, и принимая в итоге mгаз=0, получим:

+ (- ) =0. (1)

По релятивистскому закону сложения скоростей получаем:

v газ = , (2)

Исключая из уравнения 1 vгаз с помощью уравнения 2, получим:

dv /(v 2 - c 2 )= .

Для простоты полагая скорость u постоянной и интегрируя, находим, что:

m 0 / m = , (3)

где a = .

Уравнение 3 есть релятивистская формула Циолковского. Разумеется, она должна содержать нерелятивистскую формулу как предельный случай. Проверим это. Выражение будет стремится к бесконечности, a – к нулю.

= = = =

= = = .

Аналогично получаем, что:

В итоге получаем:

<=> m 0 / m = ,

Что и требовалось доказать.

Уравнение реактивного движения в поле тяжести.

Используя уравнение Мещерского, попробуем описать движение ракеты в поле тяжести, т. е. найдем связь между массой ракеты m (t ) , достигнутой ею скоростью v (t ) и временем t согласно изложению в . Для простоты будем считать, что ракета движется вертикально вверх в поле тяжести Земли, что скорость газовой струи относительно ракеты u является постоянной. Также, пренебрежем сопротивлением воздуха и изменением ускорения свободного падения g с высотой.

Как было показано выше:

m = - u mg . (уравнение Мещерского в скалярной форме).

Переписывая это уравнение в виде

m = - u <=> = -

Последнее уравнение имеет такой же вид, как и уравнение 1.1. Поэтому просто заменим (v + gt ) за неизвестное, заменяя им в уравнении 1.1 v. Тогда получим:

m0/m = exp() (4)

v (t )= u ln (m 0 / m ) – gt .

Попробуем теперь найти, какую массу газов μ(t ) должна выбрасывать ракета, чтобы оставаться неподвижной в поле тяжести Земли. Его легко найти из условия неподвижности ракеты () . Очевидно, величина μ равна –.

μ = – = . = (m0g/u) exp(-gt/ u).

Полезное действие ракеты.

Подсчитаем, какую долю энергии горючего ракета переводит в полезную механическую работу. Условимся называть коэффициентом полезного действия ракеты η отношение кинетической энергии ракеты в конце разгона к кинетической энергии выброшенных газов. Положим начальная и конечная массы ракеты соответственно m0 и m, время работы двигателей ракеты τ, массовый расход топлива равен μ, скорость истечения газов относительно ракеты постоянна и равна u. Тогда легко найти конечную скорость ракеты, используя формулу Циолковского. Зная, что

v = u ln m 0 / m ,

Находим, что конечная кинетическая энергия ракеты равна

Теперь посчитаем полную кинетическую энергию выброшенных газов в системе отсчета, связанной с Землей. Она будет равна

E2== μ + (v-u) .

Как было показано выше,

= –<=> = <=> = .

Используя формулу Циолковского, получаем

= – m0 exp(-v/u)= – μ.

=exp(v/u).

Учитывая это, получаем, что

E2= dt= + .

Учтем то, что

Тогда, избавляясь от значения v и после несложных преобразований, получим, что

E2= .

Находим отношение энергии ракеты к энергии газов:

Заметим, что это очень небольшой кпд. Например, используя полученное выражение, вычисли кпд ракеты Союз-2.1в. Масса полезного груза для нее обычно – 2,8 тонны, а вся стартовая масса – 157 тонн. Подставляя эти значения в выражение для кпд, получим, что он приблизительно равен 3,5%.

Применение формулы Циолковского.

Из формулы Циолковского следует:

а). Скорость движения ракеты в конце работы двига­теля (в конце активного участка полета) будет тем больше, чем больше относительная скорость отбрасывае­мых частиц. Если относительная скорость истечения удваивается, то и скорость ракеты возрастает в два раза.

б). Скорость ракеты в конце активного участка возра­стает, если увеличивается отношение начальной массы (веса) ракеты к массе (весу) ракеты в конце горения. Од­нако здесь зависимость более сложная, она дается сле­дующей теоремой Циолковского:

«Когда масса ракеты плюс масса взрывчатых веществ, имеющихся в реактивном приборе, возрастает в геометри­ческой прогрессии, то скорость ракеты увеличивается в прогрессии арифметической».

Этот закон можно выразить двумя рядами чисел:

Из теоремы и пояснений Циолковского видно, что «скорость ракеты далеко не про­порциональна массе, взрывчатого материала: она растет весьма медленно, но беспредельно».

Из формулы Циолковского следует весьма важный практический результат: для получения возможно боль­ших скоростей ракеты в конце работы двигателя нужно увеличивать относительные скорости отбрасываемых ча­стиц и увеличивать относительный запас топлива.

Простая формула Циолковского позволяет путем эле­ментарных вычислений устанавливать исполнимость того или другого задания. В самом деле, пусть, например, вы хотите создать одноступенчатую ракету для полета на Марс. Вы располагаете двигателем, имеющим относи­тельную скорость отброса частиц, равную . Тогда, зная, что для преодоления поля тяготения Земли нужна скорость , можно найти необходимый относительный запас топлива в ракете. Из формулы Циолковского имеем

,

По таблицам десятичных логарифмов находим, что

т. е. суммарный вес конструкции ракеты, двигателя, вспо­могательных механизмов и приборов управления должен составлять немногим больше 1% стартового веса. Такую ракету сделать невозможно. Если бы удалось увеличить относительную скорость истечения до то из формулы Циолковского легко найти, что в этом случае

а следовательно,

т. е. вес ракеты без топлива должен составлять 10% ее стартового веса. Такую ракету можно создать.

Формула Циолковского позволяет рассчитать запас топлива, необходимый для сообщения ракете скорости v. Как видно, отношение начальной массы m0 к конечной массе ракеты равно exp(v/u). В таблице 1 приведены отношения начальной массы ракеты m0 к ее конечной массе m, полученные с помощью нерелятивистской формулы (ее можно применять, например, для движения ракет на химическом топливе).

Таблица 1.

Скорость истечения газов у современных ракет на химическом топливе составляет примерно 3–4 км/с. Для сообщения ракете первой космической скорости, равной 8 км/с, отношение m 0 / m будет равно 7,39 при скорости истечения газов 4 км/с. При скорости истечения 2 км/с это отношения равно 54,6. Т. е. практически вся начальная масса ракеты приходится на топливо. Но и при отношении m0/m, равном 7,39, масса топлива в несколько раз превосходит массу самой ракеты. Технические трудности, связанные с достижением космических скоростей, решаются с помощью многоступенчатых ракет, идея создания которых принадлежит Циолковскому.

Для межзвездных полетов космических кораблей ракеты на химическом топливе абсолютно непригодны. Ближайшие к нам звезды находятся на расстоянии примерно 4 световых лет, поэтому для межзвездной экспедиции приемлемой длительности необходимы скорости близкие к скорости света. Формула Циолковского показывает, что для достижения таких скоростей, отношение m0/m будет невообразимо большим:

Таблица2.

Результаты, приведенные в таблице, 2 наглядно показывают, как существенны релятивистские эффекты. При скорости равной только 0,25c отношение m 0 / m ≈5*103327 . На каждую полезную тонну груза будет приходиться 5*103327 тонн топлива! Т. е. если полезная масса корабля всего лишь 1 кг, то масса топлива равна 5*103327 кг. Эта величина колоссальна, к примеру, масса нашей галактики «всего-то» 3*1038.

Конечно, нет смысла говорить о движении фантастического корабля с массой, превышающей массу нашей Метагалактики. Кроме того, обычная теория движения ракет основана на предположении, что импульс практически мгновенно передается ракете в целом. Это условие не может выполняться для ракет очень больших размеров. Можно конечно придумать какой-нибудь корабль, для которого оно выполняться будет, но, во всяком случае, примеры показывают, что ракеты на химическом топливе к межзвездным полетам непригодны.

Для превращения ракеты в межзвездный корабль, нужно приблизить скорость струи к скорости света. Так могло бы быть в фотонной ракете, для которой u = c , роль газовой струи для нее выполняет световой пучок, излучаемый двигателем корабля. Реактивная сила в фотонной ракете осуществлялась бы давлением света.

Принцип работы фотонного двигателя.

Для начала, поясним, что такое фотонный двигатель. Фотонный (или квантовый двигатель) есть гипотетический двигатель, в котором бы источником энергии служило бы тело, излучающее свет. Фотон, имея импульс, при истекании из двигателя создает реактивную силу. Теоретически, фотонный двигатель может позволить развить скорости, близкие к скорости света. Однако практическая разработка подобных двигателей дело отдаленного будущего.

Чаще всего обсуждаются и упоминаются в научно-фантастической литературе идеи создания такого двигателя с использованием антивещества. Энтузиасты считают, что взаимодействие вещества и антивещества позволяет перевести практически всю вступающую в реакции массу в излучение.

Принцип работы фотонного двигателя следующий: в камеру подается вещество и антивещество. В ходе аннигиляции появляются кванты света, которые направляются на стенку-зеркало, оказывая на нее давление, вызывающее реактивную тягу.

На сегодняшний день идея фотонного двигателя далека от технического воплощения. Она содержит ряд проблем, который пока что не удается решить даже теоретически.

Первая трудность, стоящая на пути осуществления классической фотонной ракеты – большая относительная масса ракеты на старте. Для того, чтобы совершить полёт к другой звезде и вернуться обратно, необходимо совершить четыре разгона (2 раза набирать скорость, и 2 раза тормозить). Скорость, развиваемую в ходе полёта, можно оценить в 0,9 скорости света, тогда стартовая масса превосходит конечную (по расчетам Зенгера) в 361 раз! Для современных ракет это число порядка 30: для «Сатурна-5» - 3000 тонн/100 тонн=30, для «Протона» - 600 тонн/20 тонн=30. Это показывает, насколько будет сложно создать подобную ракету.
Вторая трудность связана с тем, что при реакции аннигиляции рождаются кванты излучения, имеющие очень малую длину волны. При расчётах выясняется, что это будут гамма-кванты. Ещё не существует способа отражать такие кванты.

Наконец, существующие зеркала поглощают большую долю падающей на них энергии, поэтому излучение двигателя просто испарит любое зеркало. Чтобы этого не произошло, пришлось бы увеличивать диаметр зеркала, но тогда оно приобретёт гигантские размеры.

Для того, чтобы решить первую проблему, стоящую на пути создания фотонной ракеты, Бурдаков и Данилов предложили использование внешней среды в качестве топлива. Идея заключается в том, что теперь необходимо везти лишь половину горючего, т. е. антивещество, которого нет в пространстве, находится на борту ракеты, а обычное вещество забирается массозаборником из окружающей среды.

Для того, чтобы осуществлять сбор межзвёздного вещества, на 70% состоящего из водорода , необходимо его ионизировать. Для этого предложено направлять вперед поток электромагнитного излучения или электронов. Ионизованный водород собирается магнитным массозаборником, представляющим собой конус диаметром 20 метров и длиной около 25, состоящий из витков сверхпроводника. Современные материалы теряют сверхпроводимость при напряжённости магнитного поля в массозаборнике. Поэтому предлагается использование металлического водорода, или его сплава с лёгким металлом, охлаждаемого жидким гелием.

Легко заметить, что эту формулу легко получить, просто приняв в релятивистской формуле Циолковского u = c .

Выводы:

В данной исследовательской работе получены релятивистская и нерелятивистская формулы Циолковского для движения ракет в поле тяжести и в отсутствии его. Они имеют очень важное практическое значение в космонавтике. При помощи этих уравнений можно решить многие задачи, связанные с движением ракет.

На основании формулы Циолковского получено выражение для КПД ракеты. Показано, что он имеет весьма небольшое значение для современных ракет на химическом топливе.

Так же показано, что для межзвездных полетов неприменимы ракеты на химическом топливе из-за технических трудностей, связанных с большой массой необходимого топлива.

Изучен принцип работы фотонного двигателя, гипотетически способного позволить достичь скоростей, близких к скорости света, и совершать межзвездные полеты. Получено уравнение, описывающее движение фотонной ракеты.

Использованная литература:

1. Сивухин: Учебное пособие для вузов. – 3-е изд., 1989.

2. , Кондратьев для поступающих в вузы: Учеб. Пособие. – 3-е изд., 1991.

3. Журнал «Квант» 1990.

4. , «Ракеты будущего» 1980.

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от, проверенной 23 февраля 2018; проверки требуют.

Однако первыми уравнение движения тела с переменной массой решили английские исследователи У. Мур (англ. William Moore ) в 1810-1811 годах, а также П. Г. Тэйт и У. Дж. Стил из Кембриджского университета в 1856 году.

Формула Циолковского может быть получена путём интегрирования дифференциального уравнения Мещерского для материальной точки переменной массы :

Как видно из таблицы, гравитационная составляющая является наибольшей в общей величине потерь. Гравитационные потери возникают из-за того, что ракета, стартуя вертикально, не только разгоняется, но и набирает высоту, преодолевая тяготение Земли, и на это также расходуется топливо. Величина этих потерь вычисляется по формуле:

Аэродинамические потери вызваны сопротивлением воздушной среды при движении ракеты в ней и рассчитываются по формуле:

Основные потери от сопротивления воздуха также приходятся на участок работы 1-й ступени ракеты, так как этот участок проходит в нижних, наиболее плотных слоях атмосферы.

Корабль должен быть выведен на орбиту со строго определёнными параметрами, для этого система управления на активном участке полёта разворачивает ракету по определённой программе, при этом направление тяги двигателя отклоняется от текущего направления движения ракеты, а это влечёт за собой потери скорости на управление, которые рассчитываются по формуле:

Наибольшая часть потерь на управление ракеты приходится на участок полёта 2-й ступени, поскольку именно на этом участке происходит переход от вертикального полёта в горизонтальный, и вектор тяги двигателя в наибольшей степени отклоняется по направлению от вектора скорости ракеты.

Выведенная в конце XIX века, формула Циолковского и сегодня составляет важную часть математического аппарата, используемого при проектировании ракет, в частности, при определении их основных массовых характеристик.

Это уравнение дает отношение начальной массы ракеты к её конечной массе при заданных значениях конечной скорости ракеты и удельного импульса .

Масса конструкции ракеты в большом диапазоне значений зависит от массы топлива почти линейно: чем больше запас топлива, тем больше размеры и масса ёмкостей для его хранения, больше масса несущих элементов конструкции, мощнее (следовательно, массивнее) двигательная установка. Выразим эту зависимость в виде:

одноступенчатой ракетой при данных условиях достижение поставленной цели невозможно

Данный расчет является упрощенным и не учитывает затрат на изменение потенциальной энергии тела, и при его прямом применении возникает иллюзия, что затраты уменьшаются с ростом высоты орбиты. В реальности без учета потерь на сопротивление атмосферы и гравитационных потерь за время вывода на орбиту потребная скорость (мгновенно приданная телу на уровне нулевой высоты над поверхностью) оказывается выше. Её можно примерно определить, применив закон сохранения механической энергии (гипотетическая эллиптическая орбита с перицентром в точке касания Земли и апоцентром на высоте целевой орбиты):

Это приближение не учитывает импульсов на переход с круговой орбиты Земли на эллиптическую и с эллиптической на новую круговую, а также применимо только к хомановским переходам (то есть применение для параболических и гиперболических переходов не работает), но много точнее, чем просто принимать за потребную скорость первую космическую для широкого диапазона высот НОО.

Тогда на высоте 250 км потребная скорость для вывода составит 8,063 м/с, а не 7,764, а для ГСО (35 786 км над уровнем Земли) - уже 10,762 м/с, а не 3,077 м/с, как было бы при игнорировании затрат на изменение потенциальной энергии.

Для первой ступени к массе полезной нагрузки добавляется полная масса второй ступени; после соответствующей подстановки получаем:

Таким образом, полная масса первой ступени составляет 368,1 т, а общая масса двухступенчатой ракеты с полезным грузом составит 10+55,9+368,1 = 434 т. Аналогичным образом выполняются расчёты для бо́льшего количества ступеней. В результате получаем, что стартовая масса трёхступенчатой ракеты составит 323,1 т, четырёхступенчатой - 294,2 т, пятиступенчатой - 281 т.

На этом примере видно, как оправдывается многоступенчатость в ракетостроении: при той же конечной скорости ракета с бо́льшим числом ступеней имеет меньшую массу.

Такого рода расчёты выполняются не только на первом этапе проектирования - при выборе варианта компоновки ракеты, но и на последующих стадиях проектирования, по мере детализации конструкции, формула Циолковского постоянно используется при поверочных расчётах, когда характеристические скорости пересчитываются, с учётом сложившихся из конкретных деталей соотношений начальной и конечной массы ракеты (ступени), конкретных характеристик двигательной установки, уточнения потерь скорости после расчёта программы полёта на активном участке , и т. д., чтобы контролировать достижение ракетой заданной скорости.

Уравнение движения тела с переменной массой

Под переменной массой будем понимать массу тел, которая при медленном движении тел меняется за счет потери или приобретения вещества.

Выведем уравнение движения материальной точки с переменной массой на примере движения ракеты. Принцип действия ракеты очень прост. Ракета с большой скоростью выбрасывает вещество (газы), воздействуя на него с большой силой. Выбрасываемое вещество с той же, но противоположно направленной силой в свою очередь действует на ракету и сообщает ей ускорение в противоположном направлении. На ракету действуют внешние силы: сила земной тяжести, гравитационное притяжение Солнца и планет, а также сила сопротивления среды, в которой движется ракета.

Рисунок 1.

Пусть $m(t)$- масса ракеты в произвольный момент времени $t$, а $v(t)$- ее скорость в тот же момент. Количество движения ракеты в этот момент времени будет $mv$. Спустя время $dt$ масса и скорость ракеты получат приращение $dm$ и $dv$ (величина $dm$ отрицательна). Количество движения ракеты станет равным $(m+dm)(v+dv)$. Сюда надо добавить количество движения газов, образовавшихся за время $dt$. Оно равно $dm_{газ} v_{газ} $, где $dm_{газ} $- масса газов, образовавшихся за время $dt$, а $v_{газ} $- их скорость. Вычитая из суммарного количества движения в момент $t+dt$ количество движения системы в момент времени $t$, найдем приращение этой величины за время $dt$. Это приращение равно $Fdt$, где $F$- геометрическая сумма всех внешних сил, действующих на ракету. Таким образом:

$(m+dm)(v+dv)+dm_{газ} v_{газ} -mv=Fdt$. (1)

Время $dt$ и приращения $dm$ и $dv$ устремим к нулю, т.к. нас интересуют предельные отношения или производные $dm/dt$ и $dv/dt$. Поэтому, раскрывая скобки, можно отбросить произведение $dm\cdot dv$, как бесконечно малую высшего порядка. Далее, ввиду сохранения массы, $dm+dm_{газ} =0$. Пользуясь этим, можно исключить массу газов $dm_{газ} $. А разность $v_{отн} =v_{газ} -v$ есть скорость истечения газов относительно ракеты -- скорость газовой струи. С учетом этих замечаний уравнение (1) преобразуется к виду:

$mdv=v_{отн} dm+Fdt$. (2)

Разделив на $dt$, получаем:

$m\frac{dv}{dt} =v_{отн} \frac{dm}{dt} +F$. (3)

Уравнение Мещерского

По форме уравнение (3) совпадает с уравнением, выражающим второй закон Ньютона. Однако масса тела $m$здесь не постоянна, а меняется во времени из-за потери вещества. К внешней силе $F$ добавляется дополнительный член $v_{отн} \frac{dm}{dt} $, который может быть истолкован как реактивная сила, т.е. сила, с которой действуют на ракету вытекающие из нее газы. Уравнение (3) впервые было получено русским механиком И. В. Мещерским. Оно, так же как и эквивалентное ему уравнение (2), называется уравнением Мещерского или уравнением движения точки с переменной массой.

Формула Циолковского

Применим уравнение (2) к движению ракеты, на которую не действуют никакие внешние силы. Полагая $F=0$, получим:

Допустим, что ракета движется прямолинейно в направлении, противоположном скорости газовой струи $v_{отн} $. Если направление полета принять за положительное, то проекция вектора $v_{отн} $ на это направление будет отрицательной и равной $-v_{отн} $. Поэтому в скалярной форме предыдущее уравнение можно записать так $mdv=v_{отн} dm$. Тогда:

$\frac{dv}{dm} =-\frac{v_{отн} }{m} $ (4)

Скорость газовой струи $v_{отн} $ может меняться во время полета. Однако простейшим и наиболее важным является случай, когда она постоянна. Предположение о постоянстве сильно облегчает решение уравнения (4). В этом случае:

Значение постоянной интегрирования С определяется начальными условиями. Допустим, что в начальный момент времени скорость ракеты равна нулю, а ее масса равна $m_{0} $. Тогда из предыдущего уравнения получаем:

$C=v_{отн} \ln \frac{m_{0} }{m} $ тогда: $v=v_{отн} \ln \frac{m_{0} }{m} $ или $\frac{m_{0} }{m} =e^{\frac{v}{v_{отн} } } $

Последнее соотношение называется формулой Циолковского .

    Величина достигаемой ракетой максимальной скорости не зависит от времени сгорания топлива.

    Оптимальным путем изменения достигаемой максимальной скорости является увеличение относительной скорости истечения газов.

    Для получения первой космической скорости при меньшем соотношении между массой ракеты и требуемой массы топлива целесообразно использование многоступенчатых ракет.

Примеры

Пример 1

Космический корабль двигался с постоянной по величине скоростью $v$. Для изменения направления его полета включается двигатель, выбрасывающий струю газа со скоростью $v_{отн} $ относительно корабля в направлении, перпендикулярном к его траектории. Определить угол $\alpha $, на который повернется вектор скорости корабля, если начальная масса его $m_{0} $, а конечная $m$.

Дано: $v$, $v_{отн} $, $m_{0} $, $m$.

Найти: $\alpha $-?

Решение:

Ускорение корабля по абсолютной величине равно:

$a=\omega ^{2} r=\omega v$, причем $v=const$. Поэтому уравнение движения:

$m\frac{dv}{dt} =v_{отн} \frac{dm}{dt} $ переходит в: $mv\omega dt=-v_{отн} dm$.

Так как $d\alpha =\omega dt$ есть угол поворота за время $dt$, интегрируя наше уравнение, получим:

\[\alpha =\frac{v_{отн} }{v} \ln \frac{m_{0} }{m} .\]

Ответ: угол поворота вектора скорости равен: $\alpha =\frac{v_{отн} }{v} \ln \frac{m_{0} }{m} $

Пример 2

Ракета перед стартом имеет массу $m_{0} =250$кг. На какой высоте окажется ракета через $t=20$с после начала работы двигателей? Расход топлива равен $\mu =4$кг/с и скорость истечения газов относительно ракеты $v_{отн} $$=1500$м/с постоянны. Поле тяготения Земли считать однородным.

Дано: $m_{0} =250$кг, $t=20$с, $\mu =4$кг/с, $v_{отн}=1500$м/с.

Найти: $H$-?

Решение:

Рисунок 2.

Запишем уравнение Мещерского в однородном поле тяготения Земли в виде:

где $m=m_{0} -\mu t$, а $v_{0} $- скорость ракеты в момент времени $t$. Разделяя переменные получаем:

\[\Delta v_{0} =(\frac{\mu v_{отн} }{m_{0} -\mu t} -g)\Delta t\]

Решение данного уравнения, удовлетворяющего начальному условию $v_{0} =0$ при $t=0$, имеет вид:

Учитывая что $H_{0} =0$ при $t=0$ получим:

Подставляя начальные значения, получаем:

$H=v_{отн} t-\frac{gt^{2} }{2} +\frac{v_{отн} m_{0} }{\mu } (1-\frac{\mu t}{m_{0} })\ln (1-\frac{\mu t}{m_{0} })=3177,5$м

Ответ: через $20$с ракета окажется на высоте $H=3177,5$м.

  • Физика
  • Жестокими законы окружающей нас природы можно назвать только в переносном смысле. Мы создали машины, способные освободить нас от уз, удерживающих в гравитационном колодце всё человечество, но управление некоторыми из их аспектов остаётся вне наших сил. Если мы хотим начать наше путешествие по Солнечной системе, то эти ограничения придётся как-то обходить.

    Современные ракеты отбрасывают часть собственной массы в виде газа из сопел двигателей, что даёт им возможность двигаться в противоположном направлении. Это реально благодаря третьему закону Ньютона, который был сформулирован в 1687 году. Всему нашему ракетному движению мы обязаны формуле Циолковского 1903 года.

    В формуле всего четыре переменных (слева направо): конечная скорость летательного аппарата, удельный импульс ракетного двигателя (отношение тяги двигателя к секундному расходу массы топлива), начальная масса летательного аппарата (полезная нагрузка, конструкция и топливо) и его конечная масса (полезная нагрузка и конструкция).

    Как можно изменить одну из переменных, если три другие уже заданы? Это просто невозможно, никакая форма желания, хотения или просьб здесь не поможет.

    Именно потери на гравитацию определяют пределы человеческого исследования космоса, и мы вынуждены их учитывать, когда мы выбираем место, куда мы хотим отправиться. Сегодня таких мест не так уж и много. С земной поверхности мы можем оказаться на орбите Земли, с орбиты Земли можно отправиться на поверхность Луны, или на поверхность Марса, или в пространство между Луной и Землёй. Возможны различные комбинации, но с текущим развитием технологий это самые вероятные точки назначения.

    Представленные ниже значения не учитывают никакие потери на, к примеру, сопротивление атмосферы, но значения достаточно близки для иллюстрации того, что нужно принять как должное. Это в некотором роде стоимость полёта.

    Как можно заметить, путь от Земли на орбиту, эти жалкие 400 километров - это самая затратная часть полёта. Это целая половина «стоимости» полёта на Марс, даже до Луны добраться «стоит» меньше. Всё это связано с гравитационным притяжением нашего космического дома.

    А лететь нам придётся на ракете с химическими двигателями; пусть и есть перспективные разработки, но реальными остаются традиционные, используемые уже на протяжении более 60 лет в пилотируемой космонавтике двигатели. Химическое топливо накладывает ограничение на количество энергии, которое можно из них извлечь, а значит и вложить в ракету, и мы используем самые эффективные реакции, известные человечеству. И вновь нам придётся смириться с некоторым значением переменной, которое мы не в силах изменить.

    Ниже представлены как некоторые виды ракетного топлива, которые хоть раз были использованы для приведения в движение аппаратов с человеком на борту или планируются к использованию, так и их удельные импульсы. Метан-кислород находится под рассмотрением для будущих экспедиций на Луну и Марс. Самовоспламеняющееся двухкомпонентное жидкое ракетное топливо использовалось для посадочного лунного модуля программы «Аполлон» из-за своей простоты.

    Самой эффективной парой остаётся кислород-водородная, и химия не может дать нам больше. В конце 70-х годов прошлого века ядерный ракетный двигатель с водородом в качестве рабочего тела, который разгоняла теплота управляемой ядерной реакции, выдал 8,3 км/с.

    Итак, единственное, что мы теперь можем изменить в формуле Циолковского - это отношение масс летательного аппарата. Ракета должна быть построена таким образом, чтобы это отношение имело какое-то заданное значение, иначе она просто не достигнет своей цели. Что-то можно сделать, если добавить несколько гениальных решений в конструкцию, но в целом это мало повлияет на результат - химию топлива и гравитацию небесных тел не изменить.

    Итак, что имеем? Вот процентное соотношение топлива от общей массы ракеты, необходимое для попадания ракеты на орбиту Земли.

    Полученные цифры не учитывают разнообразные потери сопротивления атмосферы, неполного сгорания и других отрицательных факторов, поэтому реальное отношение чуть ближе к 100%. Прекрасные инженерные решения типа разделения на ступени, нескольких видов топлива (например, керосин или твёрдое топливо для первой ступени, водород для остальных) очень помогают в ситуации, когда лишь порядка 10% от массы аппарата остаётся на собственно ракету. Масса полезной нагрузки иногда и в буквальном смысле идёт на вес золота.

    Характеристики реальных ракет не сильно отличаются от этих идеальных, полученных без учёта множества факторов значений. Самая большая в истории человечества ракета «Сатурн-5» на стартовом столе имела топлива 85% от всей своей массы. У неё было три ступени: первая работала на керосине и кислороде, вторая и третья - на водороде и кислороде. Такой же показатель у «Шаттлов». «Союз» использует керосин на всех своих ступенях, поэтому масса его топлива составляет 91% от общей массы ракеты. Использование пары водород-кислород сопряжено с большим количеством технических трудностей, но эта комбинация более эффективна; керосин в паре с кислородом предоставляет возможность использовать более простые и надёжные решения.

    15% массы ракеты - это куда меньше, чем кажется. У ракеты должны быть баки, трубы, ведущие к двигателям, корпус, который должен быть в состоянии выдерживать как сверхзвуковой полёт в атмосфере после нечеловеческого жара стартовой площадки, так и холод безвоздушного пространства. Ракету нужно вести, управлять ей с помощью сверхзвуковых рулей и маневровых двигателей. Хрупкие тела людей в космическом корабле нужно обеспечивать кислородом, а также удалять углекислоту, их нужно защитить от жара и холода, дать им возможность безопасно вернуться на поверхность родной планеты. Наконец, люди - не единственная нагрузка ракеты: мы не запускаем людей просто для развлечения, вернее, мы можем запустить человека ради самого факта, но лишь один раз. С людьми в космос летит и разнообразное оборудование для проведения экспериментов, поскольку полёты в космос имеют целью научные исследования.

    Реальная масса полезной нагрузки ракет куда меньше этих 10%-15%. «Сатурн-5», единственная ракета, которая помогла человеку ступить на Луну, доставляла на орбиту Земли всего 4% от своей общей массы, всего же на орбиту доставлялось 120 тонн. «Шаттлы» могли доставлять примерно столько же (100 тонн), но реальная полезная нагрузка составляла порядка 20 тонн, 1% от общей массы.

    Сравним ракеты с привычными нам транспортными средствами. (Конечно, ракета имеет баки с окислителями, а земной транспорт использует для этого кислород воздуха.)

    Легко заметить, как отличаются материалы и конструкция транспортного средства в зависимости от относительной массы топлива. Транспорт с топливом массой менее 10% от его общей массы обычно делается из стали, а над его конструкцией нет нужды особо думать: прикрепи эту часть к той и усиль корпус, где требует интуиция. Десятитонный грузовик можно сильно перегрузить, но он будет продолжать двигаться, пусть и медленно.

    Воздушный транспорт требует уже более серьёзного подхода и лёгких конструкций из алюминия, магния, титана, композитных материалов. Тут уже просто так ничего не поменяешь, а над любой мелкой деталью нужно подумать дважды. Машины подобного рода не могут работать так далеко за пределами своих лимитов нагрузок. 60%-70% от массы этих аппаратов составляет собственно вес транспортного средства с полезной нагрузкой, и с применением некоторых инженерных решений возможна комфортная, безопасная и выгодная эксплуатация.

    А ракеты, где 85% приходится на топливо, находятся на пределе наших инженерных способностей. Мы едва можем их производить, они требуют постоянного улучшения для возможности их использовать. Внешне небольшие изменения требуют огромного количества разнообразного анализа и тестирования прототипов в аэродинамических трубах, вибростендах, а для пробного запуска следует удалить персонал в бункер на пару-тройку километров от стартовой площадки - даже после всех этих проверок возможны происшествия. Очень часто превышать нагрузки более, чем на 10% от заданного техническими требованиями, нельзя. Это аналогично ситуации, когда после разгона до 44 километров в час велосипед развалится на мельчайшие винтики просто потому, что предельной скоростью является 40 км/ч.

    Чудо массового производства, пивная алюминиевая банка примерно на 94% состоит из своего содержимого, и лишь 6% приходится на корпус, но каким-то образом этот показатель лучше у внешнего бака Шаттла, несмотря на то, что в нём содержится не напиток чуть холоднее комнатной температуры, а высокоактивные жидкости температурой примерно на 20 градусов выше температуры абсолютного нуля, сжатые до ужасного давления. При этом этот топливный бак может выдержать перегрузку в 3 g, сохраняя поток окислителя и горючего на уровне 1,5 тонн в секунду.

    Дон Петтит описывает детали экспедиции STS-126 ноября 2008 года. Двигатели челнока должны были отключиться при достижении скорости 7824 м/с, но если бы это произошло на уровне 7806 м/с, то космический аппарат стал бы спутником Земли, но не попал бы на целевую орбиту. Говоря проще, «Индевор» не достиг бы МКС. Большая ли это разница? Это примерно аналогично ситуации, когда нужно заплатить 10 долларов, и для этого не хватает всего лишь двух центов (0,2%). Хорошо, в этом случае можно было бы использовать часть топлива для орбитальных манёвров. Если бы скорость была всего на 3% ниже, то не хватило бы и этих запасов, и челнок пришлось бы сажать где-то в Испании. Эти 3% можно было потерять, если маршевый двигатель отключился бы всего на 8 секунд раньше.

    Представим наилучшее стечение обстоятельств: бак для Шаттла (массу двигателей мы отбросим) и водород-кислородное топливо. Если подставить значения в формулу Циолковского, то станет ясным, что при радиусе нашей планеты в полтора раза больше его нынешнего мы никогда бы не достигли космоса только за счёт технологии химических ракетных двигателей .

    И всё это - последствия формулы Циолковского. Если мы хотим избавиться от её жестокого господства, нам придётся создать работающие версии принципиально новых двигателей. Возможно, тогда ракеты станут такими же безопасными, привычными и надёжными, как и реактивные пассажирские самолёты.

    Рассмотрим движение ракеты в невесомости, т.е.. Пусть в начальный момент времени t = 0 скорость ракеты
    . Масса ракеты вместе с топливом равна M , масса самой ракеты
    . Ракета при горении топлива может выбрасывать газы со скоростью u . Какую максимальную скорость v может развить ракета при полном расходовании топлива?

    Из уравнения Мещерского в этом случае получаем

    md v = - udm , или

    Проинтегрируем левую и правую части этого уравнения

    - уравнение Циолковского ,

    где
    - число Циолковского .

    Чтобы ракета при существовавших на то время видах топлива развивала первую космической скорости 8 км /с , необходимо было иметь очень большое число
    , т.е. масса топлива во много раз должна была превышать массу оболочки ракеты. Чтобы избежать этого Циолковский предложил использовать многоступенчатые ракеты. После выгорания топлива в одной ступени ракеты эта ступень отбрасывается, и начинает работать следующая ступень ракеты. Циолковский таким образом предсказал полеты человека в космическое пространство.

    Момент импульса материальной точки относительно начала координат

    Для простоты рассмотрим случай плоского движения, т.е. траектория движения материальной точки лежит в одной плоскости, которую мы расположим перпендикулярно плоскости листа. Выберем на плоскости начало координат О и положение материальной точки будем описывать радиус-вектором . Скорость точки , ее импульс
    , ускорение , и сила будут расположены в плоски движения материальной точки, как показано на рисунке.

    Введем две новые физические величины: момент силы и момент импульса относительно начала координат O .

    -

    - момент силы относительно начала координат.

    Модуль вектора
    равен

    , где
    - угол между векторами и . Если опустить перпендикуляр из точки O на направление действия силы, то его длина будет плечом силы ,
    и модуль момента сил будет равен произведению силы на плечо, т.е.
    , что совпадает со школьным определением момента силы.

    Аналогично моменту силы вводится момент импульса

    -

    - момент импульса материальной точки относительно начала координат .

    ,

    где
    - угол между векторами и ,
    -плечо импульса , т.е. длина перпендикуляра, опущенного из точки O на направление вектора материальной точки. Оба вектора
    и , согласно определения направлены перпендикулярно плоскости движения материальной точки.

    В общем случае неплоского движения, направление векторов
    и не совпадают, но существует закон, который связывает момент импульса с моментом силы
    . Чтобы установить этот закон, возьмем производную от вектора :

    .

    В результате получаем:

    -

    - закон изменения момента импульса материальной точки относительно начала координат .

    Закон сохранения момента импульса системы материальных точек

    Рассмотрим систему, состоящую из n материальных точек: Выберем начало координат О , тогда положение точек будет задаваться радиус-векторами

    .

    Пусть материальные точки обладают импульсами

    ,

    и пусть между материальными точками системы действуют силы внутреннего взаимодействия , а также на материальные точки действуют внешние силы . Определим моменты этих сил относительно начала координат:

    - момент внутренней силы ,

    - момент внешней силы .

    Определим также моменты импульсов материальных точек

    .

    Просуммировав левые и правые части этих уравнений, получим

    Силы взаимодействия между материальными точками действуют в противоположные стороны вдоль одной и той же прямой. Их моменты относительно начала координат О равны по величине и противоположны по направлению. Поэтому моменты внутренних сил попарно уравновешивают друг друга, и сумма моментов всех внутренних сил равна нулю. В результате получим

    .

    Если система материальных точек является замкнутой, то
    , и тогда имеет место закон сохранения момента импульса

    -

    - закон сохранения момента импульса системы материальных точек.

    Если система материальных точек является замкнутой, то суммарный момент импульса системы остаётся постоянным, т.е. сохраняется во времени .