Критическая поверхностная плотность теплового потока гост. — минимальное значение поверхностной плотности теплового потока, при котором возникает устойчивое пламенное горение. Классификация строительных материалов по группам распространения пламени

МЕЖГОСУДАРСТВЕННАЯ НАУЧНО-ТЕХНИЧЕСКАЯ КОМИССИЯ ПО СТАНДАРТИЗАЦИИ, ТЕХНИЧЕСКОМУ НОРМИРОВАНИЮ И СЕРТИФИКАЦИИ В СТРОИТЕЛЬСТВЕ

МАТЕРИАЛЫ СТРОИТЕЛЬНЫЕ

Метод испытания на воспламеняемость

BUILDING MATERIALS
Ignitability Test Method

Дата введения 1996-07-01

Содержание
Введение
1 Область применения
2 Нормативные ссылки
3 Определения
4 Основные положения
5 Классификация строительных материалов по группам воспламеняемости
6 Образцы для испытания
7 Оборудование для испытания
8 Калибровка установки
9 Проведение испытания
10 Протокол испытания
11 Требования
Приложение А (справочное)

Предисловие

1. РАЗРАБОТАН Государственным центральным научно-исследовательским и проектно-экспериментальным институтом комплексных проблем строительных конструкций и сооружений имени В.А. Кучеренко (ЦНИИСК им. Кучеренко) Государственного научного центра "Строительство" (ГНЦ "Строительство") Минстроя России совместно с Всероссийским научно-исследовательским институтом противопожарной обороны () МВД России и Центром противопожарных исследований и тепловой защиты в строительстве ЦНИИСК (ЦПИТЗС ЦНИИСК)
ВНЕСЕН Минстроем России
2. ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и сертификации в строительстве (МНТКС) 15 мая 1996 года.
За принятие проголосовали
Наименование государства Наименование органа государственного управления строительством
Азербайджанская республика Госстрой Азербайджанской республики
Республика Армения Госупрархитектуры Республики Армения
Республика Молдова Минархстрой Республики Молдова
Российская Федерация Минстрой России
Республика Таджикистан Госстрой Республики Таджикистан
Республика Узбекистан Госкомархитектстрой Республики Узбекистан


3. ВВЕДЕН ВПЕРВЫЕ
4. ВВЕДЕН В ДЕЙСТВИЕ с 01.07.96 г. в качестве государственного стандарта Российской Федерации постановлением Минстроя России от 24.06.96 г. N 18-40.

Введение

разработан на основе стандарта ИСО 5657-86 "Огневые испытания - реакция на огонь - воспламеняемость строительных конструкций". В стандарте использованы принципиальные положения по определению способности к воспламенению строительных изделий при одновременном воздействии лучистого теплового потока и открытого пламени от источника зажигания. Оборудование для испытаний является идентичным оборудованию, рекомендуемому в стандарте ИСО.

1. Область применения

Настоящий стандарт устанавливает метод испытания строительных материалов на воспламеняемость и классификацию их по группам воспламеняемости.
Настоящий стандарт применяется для всех однородных и слоистых горючих строительных материалов.

2. Нормативные ссылки

В использованы ссылки на следующие нормативные документы:
;
;
ГОСТ 18124-95 Листы асбестоцементные плоские;

.

3. Определения

В настоящем стандарте применяют термины и определения по СТ СЭВ 383, а также следующие термины с соответствующими определениями:
3.1. Воспламеняемость - способность веществ и материалов к воспламенению.
3.2. Воспламенение - начало пламенного горения под действием источника зажигания, при настоящем стандартном испытании характеризуется устойчивым пламенным горением.
3.3. Время воспламенения - время от начала испытания до возникновения устойчивого пламенного горения.
3.4. Устойчивое пламенное горение - горение, продолжающееся до очередного воздействия на образец пламени от источника зажигания.
3.5. Поверхностная плотность теплового потока (ППТП) - лучистый тепловой поток, воздействующий на единицу поверхности образца.
3.6. Критическая поверхностная плотность теплового потока (КППТП) - минимальное значение поверхностной плотности теплового потока, при котором возникает устойчивое пламенное горение.
3.7. Экспонируемая поверхность - поверхность образца, подвергающаяся воздействию лучистого теплового потока и пламени от источника зажигания при испытании на воспламеняемость.

4. Основные положения

4.1. Сущность метода состоит в определении параметров воспламеняемости материала при заданных стандартом уровнях воздействия на поверхность образца лучистого теплового потока и пламени от источника зажигания.
Параметрами воспламеняемости материала являются КППТП и время воспламенения.
Для классификации материалов по группам воспламеняемости используют КППТП.
4.2. Плотность лучистого теплового потока должна находиться в пределах от 10 до 50 кВт/м².
4.3. Начальная плотность лучистого теплового потока при испытаниях (ППТП) равна 30 кВт/м².

5. Классификация строительных материалов по группам воспламеняемости

5.1. Горючие строительные материалы (по ГОСТ 30244) в зависимости от величины КППТП подразделяют на три группы воспламеняемости: В1, В2, В3 (таблица 1).

Таблица 1

6. Образцы для испытания

6.1. Для испытаний изготавливают 15 образцов, имеющих форму квадрата, со стороной 165 мм и отклонением минус 5 мм. Толщина образцов должна составлять не более 70 мм. При каждой величине ППТП испытания проводят на трех образцах.
6.2. При изготовлении образцов экспонируемая поверхность не должна подвергаться обработке.
При наличии на экспонируемой поверхности гофров, рельефа, тиснения и т.п. размер выступов (впадин) должен составлять не более 5 мм.
При несоответствии экспонируемой поверхности указанным требованиям допускается для проведения испытаний изготавливать образцы из материала с плоской поверхностью, т.е. без гофров, рельефа, тиснения и т.п.
6.3. Образцы для стандартного испытания материалов, применяемых только в качестве отделочных и облицовочных, а также для испытания лакокрасочных покрытий и кровельных материалов, изготавливают в сочетании с негорючей основой. Способ крепления должен обеспечивать плотный контакт поверхностей материала и основы.
В качестве негорючей основы следует использовать асбестоцементные листы по ГОСТ 18124 толщиной 10 или 12 мм.
В тех случаях, когда в конкретной технической документации не обеспечиваются условия для стандартного испытания, образцы изготавливают с основой и креплением, указанными в технической документации.
6.4. Лакокрасочные покрытия, а также кровельные мастики следует наносить на основу не менее чем в четыре слоя, при этом расход материала при нанесении на основу каждого слоя должен соответствовать принятому в технической документации.
6.5. Для материалов, применяемых как самостоятельно (например, для конструкций), так и в качестве отделочных и облицовочных, образцы должны быть изготовлены согласно 6.1 (один комплект) и 6.3 (один комплект).
В этом случае испытания проводят отдельно для материала и отдельно с применением его в качестве отделок и облицовок.
6.6. Для слоистых материалов с различными поверхностными слоями изготавливают два комплекта образцов (согласно 6.1) с целью экспонирования обеих поверхностей. При этом группу воспламеняемости материала устанавливают по худшему результату.
6.7. Перед испытанием образцы кондиционируют до достижения постоянной массы при температуре 23±2 °С и относительной влажности 50±5 %. Постоянство массы считают достигнутым, если при двух последовательных взвешиваниях с интервалом в 24 ч отличие в массе образцов составляет не более 0,1 % от исходной массы образца.

7. Оборудование для испытания

7.1. Общие положения
7.1.1. Общий вид установки для испытаний на воспламеняемость приведен на рисунке А1.
Установка состоит из следующих основных частей:
- опорная станина;
- подвижная платформа;
- источник лучистого теплового потока (радиационная панель);
- система зажигания (вспомогательная стационарная горелка, подвижная горелка с механизированной и ручной системой перемещения).
7.1.2. В состав вспомогательного оборудования входят: держатель образца, экранирующая пластина, держатель с образцом-имитатором, система регулирования расхода газовоздушной смеси, регулирующий и регистрирующие приборы, измеритель теплового потока, времени.
7.1.3. Установка должна быть оборудована защитным экраном и вытяжным зонтом.
7.1.4. Все размеры, приведенные в следующем описании установки, а также на рисунках, являются номинальными, за исключением указанных с допусками.

7.2. Опорная станина

7.2.1. Конструкция опорной станины, основные узлы и детали системы перемещения подвижной платформы представлены на рисунках А2 и А3.
7.2.2. Основание опорной станины изготавливают в виде прямоугольной рамы размером 275´230 мм из профиля квадратного сечения 25´25 мм с толщиной стенки 1,5 мм.
По углам рамы монтируют четыре вертикальные опоры диаметром 16 мм для крепления защитной плиты. Расстояние от рамы до защитной плиты составляет 260 мм.
7.2.3. Защитная плита имеет форму квадрата со стороной 220 мм, толщина плиты 4 мм. В центре защитной плиты вырезают отверстие диаметром 150 мм. По краю отверстия с верхней стороны плиты срезают фаску под углом 45° размером 4 мм.
7.2.4. Подвижная платформа для образца имеет форму квадрата со стороной 180 мм, толщина платформы 4 мм. В центре нижней стороны платформы устанавливают вертикальный стержень с бобышкой на нижнем конце стержня. Диаметр стержня - 12 мм, длина 148 мм.
7.2.5. Система перемещения подвижной платформы состоит из двух вертикальных направляющих (стержни длиной не менее 355 мм и диаметром 20 мм), горизонтальной подвижной планки (сечение 25´25 мм) с двумя втулками на концах планки и отверстием в центре для вертикального стержня подвижной платформы, а также рычага с противовесом.
7.2.6. Вертикальные направляющие монтируют по центру коротких сторон рамы (основание опорной станины).
Горизонтальную подвижную планку устанавливают на вертикальных направляющих. Втулки должны обеспечивать свободное перемещение планки по направляющим. Положение планки фиксируется вручную, с помощью винтов.
Под горизонтальной планкой устанавливают рычаг с противовесом. Рычаг должен заканчиваться роликом, упирающимся в бобышку вертикального стержня подвижной платформы.
7.2.7. Рычаг с противовесом должен обеспечивать перемещение платформы с образцом к защитной плите до достижения плотного контакта поверхности образца и защитной плиты. Указанным требованиям удовлетворяет рычаг длиной примерно 320 мм с противовесом массой примерно 3 кг.
При плавлении, размягчении или усадке образца допускается смещение платформы относительно защитной плиты на расстояние не более 5 мм. Для выполнения этого требования устанавливают регулируемый стопор или используют прокладки из негорючего материала, размещаемые между платформой и защитной плитой.

7.3. Радиационная панель

7.3.1. Радиационная панель (рисунки А4, А5) должна обеспечивать заданные стандартом уровни воздействия лучистого теплового потока в центре отверстия защитной плиты, в плоскости, совпадающей с ее нижней поверхностью.
7.3.2. Радиационную панель устанавливают на вертикальных направляющих опорной станины. При этом расстояние от нижней кромки радиационной панели до верхней плоскости защитной плиты должно составлять 22±1 мм.
7.3.3. Радиационная панель состоит из кожуха с теплоизолирующим слоем и нагревательного элемента. В качестве теплоизолирующего слоя используют негорючий минераловолокнистый материал.
7.3.4. Нагревательный элемент диаметром от 8 до 10 мм и длиной примерно 3,5 м (номинальная мощность 3 кВт) сворачивают в форме усеченного конуса и прикрепляют к внутренней поверхности кожуха.
7.3.5. На поверхности нагревательного элемента в двух диаметрально противоположных точках устанавливают два термоэлектрических преобразователя. Каждый из них прикрепляют к витку нагревательного элемента на расстоянии от 1/3 до 1/2 высоты кожуха радиационной панели от ее верхней кромки.
Способ крепления должен обеспечивать плотный контакт термоэлектрических преобразователей с поверхностью нагревательного элемента. Один из рекомендуемых способов крепления показан на рисунке А5.
Один из термоэлектрических преобразователей используют для регулирования температуры нагревателя (регулирующий термоэлектрический преобразователь), второй - для контроля температуры нагревателя (контролирующий термоэлектрический преобразователь).

7.4. Система зажигания

7.4.1. Подвижная горелка должна перемещаться из исходного положения над радиационной панелью в рабочее положение внутри панели. Конструкция подвижной горелки и система ее перемещения приведены на рисунках А6 - А8.
7.4.2. Вспомогательная горелка предназначается для зажигания подвижной горелки в случае ее затухания. Диаметр сопла вспомогательной горелки составляет от 1 до 2 мм.
7.4.3. В рабочем положении факел пламени подвижной горелки должен располагаться над центром отверстия в защитной плите в плоскости, перпендикулярной направлению перемещения горелки. При этом центр сопла горелки должен быть расположен на расстоянии 10±1 мм от плоскости подвижной плиты.
7.4.4. Подвижная горелка должна перемещаться из исходного положения в рабочее положение каждые 4 +0,4 с. Время нахождения горелки в рабочем положении должно составлять 1 с.

7.5. Вспомогательное оборудование

7.5.1. Держатель образца представляет собой плоский металлический лист, на верхней поверхности которого имеются бортики для установки и фиксации образца (рисунок А9). На нижней поверхности держателя имеются направляющие и стопор, фиксирующий положение держателя.
7.5.2. Экранирующая пластина (рисунок А10) предназначается для защиты поверхности образца от воздействия теплового потока. Экранирующую пластину изготавливают из листового алюминия или нержавеющей стали толщиной 2 мм.
7.5.3. Образец-имитатор изготавливают из негорючего минераловолокнистого материала плотностью 200±50 кг/м³ (рисунок А11). Держатель образца-имитатора изготавливают из негорючего материала плотностью 825±125 кг/м³.
7.5.4. Система регулирования расхода газовоздушной смеси (рисунок А12) подключается к источникам газообразного топлива (пропана или пропан-бутановой смеси) и воздуха, содержит игольчатые вентили, расходомеры с верхним пределом измерения не менее 1,2 л/ч (для газа) и не менее 12 л/ч (для воздуха) с погрешностью не более 4 %. Рекомендуется также на линиях подачи топлива и воздуха размещать фильтры для защиты расходомеров от примесей.
7.5.5. Прибор, регулирующий температуру нагревательного элемента радиационной панели, должен быть рассчитан на мощность не менее 3 кВт и силу тока не менее 15 А. Для регистрации температуры рекомендуется использовать прибор с классом точности не менее 0,5.
7.5.6. Для измерения ППТП рекомендуется использовать прибор с диапазоном измерения от 1 до 75 кВт/м², погрешность измерения - не более 5 %. Для регистрации показаний измерителя теплового потока применяют регистрирующий прибор с классом точности не менее 0,1.
7.5.7. В качестве регистратора времени рекомендуется использовать приборы с диапазоном измерения до 1 ч, погрешность измерения должна составлять не более 1 с.
7.5.8. Место размещения установки оборудуют защитными экранами и вытяжной вентиляцией (рисунок А13). В вытяжном зонте устанавливают отражатель воздушного потока, обеспечивающий в зазорах скорость воздуха от 2 до 3 м/с при расходе воздуха от 0,25 до 0,35 м³/с.

8. Калибровка установки

8.1. Общие положения
8.1.1. Цель калибровки состоит в установлении требуемых настоящим стандартом по 4.2 величин ППТП, а также равномерности его распределения в пределах экспонируемой поверхности образца.
8.1.2. Равномерность распределения теплового потока по экспонируемой поверхности образца обеспечивается при соблюдении следующих условий:
- отклонение ППТП в любых четырех диаметрально противоположных точках окружности диаметром 50 мм от величины ППТП в центре экспонируемой поверхности должно составлять не более ± 3 %;
- отклонение ППТП в любых четырех диаметрально противоположных точках окружности диаметром 100 мм от величины ППТП в центре экспонируемой поверхности должно составлять не более ± 5 %.
8.1.3. Установление требуемых стандартом величин ППТП проводят путем определения зависимости ППТП в центре экспонируемой поверхности от температуры нагревательного элемента.
8.1.4. Калибровку проводят на образцах (3 шт.), имеющих форму квадрата, со стороной 165 мм и отклонением минус 5 мм. Толщина калибровочного образца должна составлять не менее 20 мм. Для изготовления калибровочного образца используют асбестоцементные листы по ГОСТ 18124.
В калибровочных образцах вырезают отверстие для установки измерителя теплового потока: в первом образце - в центре, во втором образце - в любой точке окружности диаметром 50 мм, в третьем образце - в любой точке окружности диаметром 100 мм.
8.1.5. Калибровку проводят при метрологической аттестации установки или замене нагревательного элемента и/или термоэлектрических преобразователей.

8.2. Порядок проведения калибровки

8.2.1. При калибровке подвижная горелка должна находиться в исходном положении, вентили системы подачи топлива и воздуха перекрыты.
8.2.2. Устанавливают измеритель теплового потока в калибровочный образец с отверстием в центре экспонируемой поверхности.
8.2.3. Помещают калибровочный образец в держатель и устанавливают на подвижную платформу.
8.2.4. Включают и путем изменения мощности, подаваемой на нагревательный элемент радиационной панели, подбирают по регулирующему термоэлектрическому преобразователю величину термоЭДС, при которой в центре экспонируемой поверхности обеспечивается тепловой поток плотностью 50 кВт/м².
8.2.5. Выдерживают установку в режиме нагрева по 8.2.4 не менее 10 мин и фиксируют величину термоЭДС контролирующего термоэлектрического преобразователя.
8.2.6. Повторяют операции по 8.2.4, 8.2.5 с целью определения величин термоЭДС, обеспечивающих в центре экспонируемой поверхности тепловые потоки плотностью 45, 40, 35, 30, 25, 20, 10, 5 кВт/м².
8.2.7. После выполнения операций по 8.2.6 устанавливают измеритель теплового потока в калибровочный образец с отверстием на окружности диаметром 50 мм и повторяют операции по 8.2.3 - 8.2.5 для тепловых потоков плотностью 50, 40, 30, 20, 10 кВт/м².
Указанные измерения повторяют для каждой из четырех диаметрально противоположных точек окружности, меняя положение образца в держателе.
8.2.8. Повторяют процедуру калибровки по 8.2.7 на калибровочном образце с отверстием на окружности диаметром 100 мм.
8.2.9. При несоответствии результатов измерений ППТП требованиям 8.1.2 следует заменить нагревательный элемент радиационной панели.
8.2.10. Контроль калибровки установки проводят через каждые 60 ч работы радиационной панели по величине ППТП, равной 30 кВт/м², в центре экспонируемой поверхности.
Калибровку установки повторяют в том случае, если отклонение измеренной величины ППТП составляет более 0,06 кВт/м².

9. Проведение испытания

9.1. Образец для испытания, кондиционированный в соответствии с 6.7, оборачивают листом алюминиевой фольги (номинальная толщина 0,2 мм), в центре которого вырезано отверстие диаметром 140 мм. При этом центр отверстия в фольге должен совпадать с центром экспонируемой поверхности образца (рисунок А14).
9.2. Образец для испытания помещают в держатель, устанавливают его на подвижную платформу и производят регулировку противовеса. После этого держатель с образцом для испытания заменяют держателем с образцом-имитатором.
9.3. Устанавливают подвижную горелку в исходное положение по 7.4.1, регулируют расход газа (19 - 20 мл/мин) и воздуха (160 - 180 мл/мин), подаваемых в подвижную горелку. Для вспомогательной горелки длина факела пламени составляет примерно 15 мм.
9.4. Включают электропитание и по регулирующему термоэлектрическому преобразователю задают установленную при калибровке величину термоЭДС, соответствующую ППТП 30 кВт/м².
9.5. После достижения заданной величины термоЭДС установку выдерживают в этом режиме не менее 5 мин. При этом величина термоЭДС, зафиксированная по контролирующему термоэлектрическому преобразователю, должна отличаться от полученной при калибровке не более чем на 1 %.
9.6. Помещают экранирующую пластину на защитную плиту, заменяют образец-имитатор на образец для испытания, включают механизм подвижной горелки, удаляют экранирующую пластину и включают регистратор времени.
Время проведения этих операций должно составлять не более 15 с.
9.7. По истечении 15 мин или при воспламенении образца испытание прекращают. Для этого помещают экранирующую пластину на защитную плиту, останавливают регистратор времени и механизм подвижной горелки, удаляют держатель с образцом и помещают на подвижную платформу образец-имитатор, убирают экранирующую пластину.
9.8. Устанавливают величину ППТП 20 кВт/м², если в предыдущем испытании зафиксировано воспламенение, или 40 кВт/м² при его отсутствии. Повторяют операции по 9.5 - 9.7.
9.9. Если при ППТП 20 кВт/м² зафиксировано воспламенение, уменьшают величину ППТП до 10 кВт/м² и повторяют операции по 9.5 - 9.7.
9.10. Если при ППТП 40 кВт/м² воспламенение отсутствует, устанавливают величину ППТП 50 кВт/м² и повторяют операции по 9.5 - 9.7.
9.11. После определения двух величин ППТП, при одной из которых наблюдается воспламенение, а при другой - отсутствует, задают величину ППТП на 5 кВт/м² больше той величины, при которой воспламенение отсутствует, и повторяют операции по 9.5 - 9.7 на трех образцах.
Если при ППТП 10 кВт/м² зафиксировано воспламенение, то следующее испытание проводят при ППТП 5 кВт/м².
9.12. В зависимости от результатов испытаний по 9.11 величину ППТП увеличивают на 5 кВт/м² (при отсутствии воспламенения) или уменьшают на 5 кВт/м² (при наличии воспламенения) и повторяют операции по 9.5 - 9.7 на двух образцах.
9.13. Для каждого испытанного образца фиксируют время воспламенения и следующие дополнительные наблюдения: время и место воспламенения; процесс разрушения образца под действием теплового излучения и пламени; плавление, вспучивание, расслоение, растрескивание, набухание либо усадка.
9.14. Для материалов с высокой сжимаемостью (минераловатные плиты), а также материалов, плавящихся или размягчающихся в процессе нагревания, испытание следует проводить с учетом 7.2.7.
9.15. Для материалов, приобретающих при нагревании способность к прилипанию либо образующих поверхностный обугленный слой с низкой механической прочностью, либо содержащих под экспонируемой поверхностью воздушный зазор, с целью предотвращения помех перемещению подвижной горелки либо повреждения горелкой экспонируемой поверхности образца испытания следует проводить с использованием в приводном механизме стопора, устраняющего возможность контакта подвижной горелки с поверхностью образца.
9.16. Для материалов, образующих значительное количество дыма или продуктов разложения, гасящих пламя подвижной горелки и исключающих возможность повторного ее зажигания с помощью вспомогательной горелки, результат фиксируют в протоколе испытания с указанием отсутствия воспламенения вследствие систематического гашения пламени подвижной горелки продуктами разложения.

10. Протокол испытания

В протоколе испытания приводят следующие данные:
- наименование испытательной лаборатории;
- наименование заказчика;
- наименование изготовителя (поставщика);
- описание материала или изделия, техническую документацию, а также торговую марку, состав, толщину, плотность, массу и способ изготовления образцов, характеристику экспонируемой поверхности, для слоистых материалов - толщину каждого слоя и характеристику материала каждого слоя;
- параметры воспламеняемости: ППТП, время воспламенения при ППТП для каждого из образцов;
- вывод о группе воспламеняемости материала с указанием величины КППТП;
- дополнительные наблюдения при испытании образца: время и место воспламенения; процесс разрушения образца под действием теплового излучения и пламени; плавление, вспучивание, расслоение, растрескивание, набухание либо усадка.

11. Требования безопасности

Помещение, в котором проводят испытания, должно быть оборудовано приточно-вытяжной вентиляцией. Рабочее место оператора должно удовлетворять требованиям электробезопасности по ГОСТ 12.1.019 и санитарно-гигиеническим требованиям по ГОСТ 12.1.005.

ПРИЛОЖЕНИЕ А (справочное)

Размеры в миллиметрах
Рисунок А2 - Опорная станина (разрез по ВВ)
1 - радиационная панель с нагревательным элементом; 2 - подвижная горелка; 3 - вспомогательная стационарная горелка; 4 - силовой кабель нагревательного элемента; 5 - кулачок с ограничителем хода для ручного управления подвижной горелкой; 6 - кулачок для автоматического управления подвижной горелкой; 7 - приводной ремень; 8 - втулка для подсоединения подвижной горелки к системе подачи топлива; 9 - монтажная плита для системы зажигания и системы перемещения подвижной горелки; 10 - защитная плита; 11 - вертикальная опора; 12 - вертикальная направляющая; 13 - подвижная платформа для образца; 14 - основание опорной станины; 15 - ручное управление; 16 - рычаг с противовесом; 17 - привод к электродвигателю
1 - радиационная панель; 2 - защитная плита; 3 - подвижная платформа; 4 - противовес; 5 - рычаг



Деталь 5 Деталь 6
1 - кожух с теплоизолирующим слоем; 2 - теплоизолирующий слой из минерального волокна; 3 - нагревательный элемент; 4 - хомут; 5 - термоэлектрический преобразователь
1 - втулка для присоединения подвижной горелки к системе питания топливом; 2 - гибкий шланг; 3 - противовес; 4 - ролик; 5 - сопло; 6 - стабилизатор пламени
Рисунок А6 - Подвижная горелка
1 - вал приводного механизма; 2 - кулачок приводного механизма; 3 - кулачок с ограничителем хода; 4 - вал ручного управления; 5 - линия, проходящая через центр радиационной панели
Рисунок А7 - Монтажная плита системы перемещения подвижной горелки
1 - кулачок приводного механизма; 2 - кулачок с ограничителем хода
Рисунок А8 - Механизм привода подвижной горелки (сетка со стороной квадрата 10 мм)
1 - заклепки; 2 - рукоятка; 3 - металлический лист (толщина 0,7)
Рисунок А9 - Держатель образца
1 - плоский лист из алюминия или нержавеющей стали (толщина 2 мм); 2 - рукоятка; 3 - заклепки
Рисунок А10 - Экранирующая пластина

1 - плита из минерального волокна; 2 - угловая стойка с самонарезным винтом; 3 - основание образца имитатора; 4 - рукоятка
1 - регулятор температуры; 2 - подключение термопар; 3 - подводка электропитания; 4 - милливольтметр; 5 - измеритель теплового потока; 6 - радиационная панель; 7 - подвижная горелка; 8 - вспомогательная горелка; 9 - втулка для подсоединения подвижной горелки к системе питания топливом; 10 - невозвратные клапаны; 11 - игольчатый вентиль; 12 - редуктор; 13 - расходомеры; 14 - фильтры; 15 - игольчатые вентили; 16 - редукторы-регуляторы давления; 17 - подвод сжатого воздуха; 18 - пропан

1 - отражатель; 2 - зазор (по всем кромкам отражателя); 3 - защитные экраны
1 - алюминиевая фольга; 2 - образец

: строительные материалы, воспламеняемость, испытание, группа воспламеняемости, горючие материалы, критическая поверхность теплового потока, время воспламенения

Умеренновоспламеняемые (В2), имеющие величину критической поверхностной плотности теплового потока не менее 20, но не более 35 киловатт на квадратный метр;

Трудновоспламеняемые (В1), имеющие величину критической поверхностной плотности теплового потока более 35 киловатт на квадратный метр;

Сильногорючие (Г4), имеющие температуру дымовых газов более 450 градусов Цельсия, степень повреждения по длине испытываемого образца более 85 процентов, степень повреждения по массе испытываемого образца более 50 процентов, продолжительность самостоятельного горения более 300 секунд.

Нормальногорючие (Г3), имеющие температуру дымовых газов не более 450 градусов Цельсия, степень повреждения по длине испытываемого образца более 85 процентов, степень повреждения по массе испытываемого образца не более 50 процентов, продолжительность самостоятельного горения не более 300 секунд;

Умеренногорючие (Г2), имеющие температуру дымовых газов не более 235 градусов Цельсия, степень повреждения по длине испытываемого образца не более 85 процентов, степень повреждения по массе испытываемого образца не более 50 процентов, продолжительность самостоятельного горения не более 30 секунд;

Слабогорючие (Г1), имеющие температуру дымовых газов не более 135 градусов Цельсия, степень повреждения по длине испытываемого образца не более 65 процентов, степень повреждения по массе испытываемого образца не более 20 процентов, продолжительность самостоятельного горения 0 секунд;

Горючие - вещества и материалы, способные самовозгораться, а также возгораться под воздействием источника зажигания и самостоятельно гореть после его удаления.

Трудногорючие - вещества и материалы, способные гореть в воздухе при воздействии источника зажигания, но неспособные самостоятельно гореть после его удаления;

Метод относится к крупномасштабным, что связано с размерами установки (шахтной печи) и образцов испытуемого материала.

Его применяют для испытаний всех однородных и слоистых горю­чих материалов, в том числе применяемых в качестве отделочных и облицо­вочных, а также лакокрасочных покрытий.

Сущность метода заключается в воздействии на образец материала пламени газовой горелки в течение 10 мин и регистрации параметров, ха­рактеризующих его поведение при огневом воздействии.

12 образцов. Размеры образцов: 1000x190 мм, толщиной до 70 мм. их располагают вертикально, складывая по 4 в виде короба.

Установка для проведения испытаний представляет собой вертикаль­ную печь шахтного типа.

Последовательность операций в процессе испытаний следующая.

    Взвешивают образцы и прикрепляют их к раме держателя 4.

    Вставляют образцы 6 в камеру сжигания 9, закрепляют и закры­вают дверцу 5.

    Включают вентилятор 13 (включение вентилятора является нача­лом испытаний).

    Зажигают газовую горелку 10.

    С момента начала испытаний в течение 10 мин фиксируют темпе­ратуру дымовых газов с помощью термопар 8 и время самостоятельного го­рения образца.

    После испытаний остывшие образцы извлекают из печи, прово­дят измерения длины поврежденной части образцов и взвешивают их.

Результаты испытаний оценивают по данным табл. 1.5.

Таблица 1.5

Классификация материалов по группам горючести

Группа

горючести

материалов

Параметры горючести

Температура дымовых газов /,°С

Степень повреждения по длине Si , %

Степень повреждения по массе Su , %

Продолжительность самостоятельного ГОреНИЯ 1сг, с

Примечание. Для материалов групп горючести Г1-ГЗ не допускается образование горящих капель расплава при испытании.

  1. Метод испытания материалов на воспламеняемость

. Метод применяют для всех однородных и слоистых горючих строи­тельных материалов.

Сущность метода состоит в определении параметров воспламеняе­мости материала при заданных стандартных уровнях воздействия на повер­хность образца лучистого теплового потока и пламени от источника зажи­гания, которые определяют на приборе, изображенном на рис. 1.8.

Параметрами воспламеняемости являются КППТП - критическая поверхностная плотность теплового потока и время воспламенения.

КППТП - минимальное значение поверхностной плотности тепло­вого потока (ППТП), при котором возникает устойчивое

пламенное горе­ние. КППТП используют для классификации материалов по группам воспла­меняемости.

Уровни воздействия лучистого теплового потока должны находить­ся в пределах от 5 до 50 кВт/м 2 .

Для испытания готовят 15 образцов, имеющих форму квадрата со стороной 165 (-5) мм, толщиной не более 70 мм.

Порядок испытаний следующий.

    Образец после кондиционирования оборачивают листом алюми­ниевой фольги, в центре которого вырезано отверстие диаметром 140 мм.

    Выключают электропитание и по регулирующему термоэлектри­ческому преобразователю (термопаре) задают полученную при калибровке установки величину термо-ЭДС (напряжения), соответствующую ППТП 30 кВт/м 2 .

    После достижения заданной величины термо-ЭДС установку вы­держивают в этом режиме не менее 5 мин. При этом величина термо-ЭДС не должна отклоняться более чем на 1%.

    Помещают экранирующую пластину на защитную плиту, заменя­ют образец-имитатор на образец для испытания, включают механизм под­вижной горелки, удаляют экранирующую пластину и включают регистра­тор времени.

    По истечении 15 мин или при воспламенении образца испытание прекращают. Для этого помещают экранирующую пластину на защитную плиту, останавливают регистратор времени и механизм подвижной горелки, удаляют держатель с образцом и помещают на подвижную платформу об­разец имитатор, убирают экранирующую пластину.

    Задают величину ППТП 20 кВт/м 2 (если в предыдущем испытании зафиксировано воспламенение) или 40 кВт/м 2 при его отсутствии. Повторя­ют операции по п. 5-7.

    Если при ППТП 20 кВт/м 2 зафиксировано воспламенение, умень­шают величину ППТП до 10 кВт/м 2 и повторяют операции 5-7.

    Если при ППТП 40 кВт/м 2 воспламенение отсутствует, задают величину ППТП 50 кВт/м 2 и повторяют операции 5-7. При отсутствии вос­пламенения при ППТП 50 кВт/м 2 проводят еще 2 испытания при этом ППТП, и если воспламенение не наблюдается, то испытания прекращают.

11. После определения двух величин ППТП, при одной из которых наблюдается воспламенение, а при другой отсутствует, задают величину ППТП на 5 кВт/м 2 больше той величины, при которой воспламенение от­сутствует, и повторяют операции п. 5-7 на трех образцах.

За КППТП считают наименьшую величину ППТП, при которой для грех образцов зафиксировано воспламенение.

Оценку по воспламеняемости материалов производят

    Метод испытания материалов на распространение пламени

Метод применяют для испытания всех однородных и слоистых го­рючих материалов, используемых в поверхностных слоях полов и кровель зданий.

Сущность метода состоит в определении критической поверхност- " ной плотности теплового потока (КППТП), величину которого устанавли- ; вают по длине распространения пламени по образцу в результате воздей­ствия теплового потока на его поверхность.

Длина распространения пламени (I) - максимальная величина по­вреждения поверхности образца в результате распространения пламенного горения.

Для испытаний изготавливают 5 образцов материала размером 1100 х 250 мм. Для анизотропных материалов изготавливают 2 комплекта об­разцов (например, по утку и по основе). Образцы изготавливают в сочетании с негорючей основой. Способ крепления материала к основе должен соответ­ствовать используемому в реальных условиях. В качестве негорючей основы применяют асбестоцементные листы толщиной 10 или 12 мм. Толщина образца с негорючей основой должна составлять не более 60 мм.

Испытательная установка состоит из следующих основных

испытательной камеры с дымоходом и вытяжным зонтом;

источника лучистого теплового потока (радиационной панели);

источника зажигания (газовой горелки);

держателя образца и устройства для введения держателя в испыта­тельную камеру (платформы).

Установку оборудуют приборами для регистрации и измерения тем­пературы в испытательной камере и дымоходе.

Порядок испытаний следующий.

    После калибровки установки, т.е. после установления требуемых ГОСТ величин ППТП в заданных точках калибровочного образца и по его поверхности, а также подготовки ее к работе открывают дверцу каме­ры и зажигают газовую горелку, располагая ее так, чтобы расстояние до экспонируемой поверхности составляло не менее 50 мм.

    Устанавливают образец в держатель, фиксируют, помещают их на платформу и вводят в камеру.

    Закрывают дверцу камеры и включают секундомер. После выдер­жки в течение 2 мин приводят пламя горелки в контакт с образцом в точке

    расположенной на центральной оси. Оставляют факел пламени в этом по­ложении в течение 10 мин. По истечении времени горелку возвращают в исходное положение.

    При отсутствии воспламенения образца в течение 10 мин испыта­ние считают законченным. В случае воспламенения образца испытание за­канчивают при прекращении пламенного горения или по истечении 30 мин

разца проводят после охлаждения держателя образца до комнатной темпе­ратуры и проверки соответствия ППТП требованиям ГОСТ .

    Измеряют длину поврежденной части образца по его продольной оси для каждого из пяти образцов.

Повреждением считается выгорание и обугливание материала об­разца в результате распространения пламенного горения по его поверхно­сти. Оплавление, коробление, спекание, вспучивание, усадка, изменение цвета, формы, нарушение целостности образца (разрывы, сколы поверхно­сти) повреждением не считаются.

Длину распространения пламени определяют как среднее арифмети­ческое по длине поврежденной части пяти образцов.

Горючие строительные материалы в зависимости от величины КППТП подразделяют на 4 группы распространения пламени

Теплового потока, Вт\м

Материал Продолжительность облучения, мин
Древесина с шероховатой по­верхностью
Древесина, окрашенная масля­ной краской
Торф брикетный
Торф кусковой
Хлопок-волокно
Картон серый
Стеклопластик
Резина
Горючие газы и огнеопасные жидкости с температурой са­мовоспламенения, °С:
>500 - -
Человек без средств спецза­щиты:
в течение длительного времени; - -
в течение 20 с - -

Сравнение значений Q л.кр, полученных расчетом по фор­муле с данными из таблицы, позволят сделать вывод о воз­можности возгорания за заданное время или определить безопасные расстояния от очага пожара при заданном вре­мени воздействия.

Нейтрализация и устранение источников зажигания;

Повышение огнестойкости конструкций зданий и соору­жений;

Организация пожарной охраны.

К инженерно-техническим мероприятиям по защите от пожаров относятся:

Применение основных строительных конструкций объек­тов с регламентированными пределами огнестойкости и пожар­ной опасности;

Использование пропитки конструкций объектов антиперенами и нанесение на них огнезащитных красок (составов);

Применение устройств, обеспечивающих ограниче­ние распространения пожара (противопожарные преграды; предельно допустимые площади противопожарных отсеков и секций, ограничение этажности);

Аварийное отключение и переключение установок и ком­муникаций;

Применение средств, предотвращающих или ограничи­вающих разлив и растекание жидкости при пожаре;

Использование огнепреграждающих устройств в обо­рудовании;

Применение средств пожаротушения и соответствую­щих видов пожарной техники;

Использование автоматических установок пожарной сигнализации.

К основным видам техники, предназначенной для защиты различных объектов от пожаров, относятся средства сигна­лизации и пожаротушения.

Пожарная сигнализация должна быстро и точно сообщать о пожаре. Наиболее надежной системой пожарной сигнали­зации является электрическая пожарная сигнализация. Наи­более совершенные виды такой сигнализации дополнительно обеспечивают автоматический ввод в действие предусмотрен­ных на объекте средств пожаротушения. Принципиальная схема электрической системы сигнализации представлена на рис. 14.1. Она включает пожарные извещатели, установ­ленные в защищаемых помещениях и включенные в сиг­нальную линию; приемно-контрольную станцию, источник питания, звуковые и световые средства сигнализации, а также передает сигнал на автоматические установки пожаротуше­ния и дымоудаления.


Надежность электрической системы сигнализации обеспе­чивается тем, что все ее элементы и связи между ними посто­янно находятся под напряжением, чем достигается контроль за исправностью установки.

Важнейшим элементом системы пожаротушения явля­ются пожарные извещатели, которые преобразуют физиче­ские параметры, характеризующие пожар, в электрические сигналы. По способу приведения в действие извещатели под­разделяют на ручные и автоматические. Ручные извещатели выдают в линию связи электрический сигнал определенной формы в момент нажатия кнопки. Автоматические пожар­ные извещатели включаются при изменении параметров окружающей среды в момент возникновения пожара. В зави­симости от фактора, вызывающего срабатывание датчика, извещатели подразделяются на тепловые, дымовые, свето­вые и комбинированые.

Наибольшее распространение получили тепловые извеща­тели, чувствительные элементы которых могут быть биметал­лическими, термопарными, полупроводниковыми.

Дымовые пожарные извещатели, реагирующие на дым, имеют в качестве чувствительного элемента фотоэлемент или ионизационные камеры, а также дифференциальное фотореле. Дымовые извещатели бывают двух типов: точеч­ные, сигнализирующие о появлении дыма в месте их уста­новки, и линейно-объемные, работающие на принципе затенения светового луча между приемником и излуча­телем.

Световые пожарные извещатели основаны на фиксации различных составных частей спектра открытого пламени. Чувствительные элементы таких датчиков реагируют на ульт­рафиолетовую или инфракрасную область спектра оптиче­ского излучения.

Инерционность датчиков является важной характеристи­кой. Наибольшей инерционностью обладают тепловые, наи­меньшей - световые датчики.

Пожаротушение. Комплекс мероприятий, направленных на устранение пожара и создание условий, при которых про­должение горения будет невозможным, называется пожаро­тушением.

Для ликвидации процесса горения необходимо прекра­тить подачу в зону горения либо горючего, либо окислителя, или уменьшить подвод теплового потока в зону реакции. Это достигается:

Сильным охлаждением очага горения или горящего материала с помощью веществ (например, воды), обладаю­щих большой теплоемкостью;

Изоляцией очага горения от атмосферного воздуха или снижением концентрации кислорода в воздухе путем подачи в зону горения инертных компонентов;

Применением специальных химических средств, тор­мозящих скорость реакции окисления;

Механическим срывом пламени сильной струей газа или воды;

Созданием условий огнепреграждения, при которых пламя распространяется через узкие каналы, сечение кото­рых меньше тушащего диаметра.

Огнетушащие вещества. В настоящее время в качестве средств пожаротушения применяют:

Воду, которая подается в очаг пожара сплошной или распыленной струей;

Различные виды пен (химическая и воздушно-механи­ческая), представляющих собой пузырьки воздуха или угле­кислого газа, окруженные тонкой пленкой воды;

Инертные газовые разбавители, в качестве которых могут использоваться: углекислый газ, азот, аргон, водяной пар, дымовые газы и т.д.;

Гомогенные ингибиторы - низкокипящие галогено- углеводороды;

Гетерогенные ингибиторы - огнетушащие порошки;

Комбинированные составы.

Наибольшее распространение получили огнетушащие вещества, приведенные в табл. 14.4.

Таблица 14.4

Огнетушащие вещества

Огнетушащее средство Способ и воздей­ствие на горение
Вода, вода со смачивателем, твердый диоксид уг­лерода (углекислота в снегообразном виде), вод­ные растворы солей Охлаждение
Огнетушащие пены (химическая, воздушно-меха­ническая); огнетушащие порошковые составы; не­горючие сыпычие вещества (песок, земля, шлаки, флюсы, графит); листовые материалы (покрыва­ла, щиты) Изоляция
Инертные газы (диоксид углерода, азот, аргон, дымовые газы); водяной пар; тонкораспыленная вода; газоводяные смеси; продукты взрыва ВВ; ле­тучие ингибиторы, образующиеся при разложе­нии галоидоуглеродов Разбавление
Галоидоуглеводороды; бромистый этил, хладон 114 В2 (тетрафтордибромэтан) и 13 В1 (трифтор- бромметан); составы на основе галоидоуглеродов: 3,5; ННД; 7; БМ; БФ-1; БФ-2; водобромэтиловые растворы (эмульсии), огнетушащие порошковые составы Ингибирующее воздействие. Хи­мическое тормо­жение реакции горения

Вода является наиболее широко применяющимся сред­ством тушения. Однако она характеризуется и отрицатель­ными свойствами:

Электропроводна;

Имеет большую плотность и поэтому не применяется для тушения нефтепродуктов;

Способна вступать в реакцию с некоторыми вещест­вами и бурно реагировать с ними (калий, кальций, натрий, гидриды щелочных и щелочноземельных металлов, селитра, сернистый ангидрид, нитроглицирин);

Имеет низкий коэффициент использования в виде ком­пактных струй;

Имеет высокую температуру замерзания, что затрудняет тушение в зимнее время, и высокое поверхностное натяже­ние - 72,8-10 3 Дж/м 2 , что является показателем низкой сма­чивающей способности воды.

Вода со смачивателем (добавка пенообразователя, суль- фанола, эмульгаторов и т.д.) позволяет значительно сни­зить поверхностное натяжение воды (до З6,410 3 Дж/м 2). В таком виде она обладает хорошей проникающей способно­стью, за счет чего достигается наибольший эффект в тушении пожаров, и особенно при горении волокнистых материа­лов: торфа, сажи. Водные растворы смачивателей позволяют уменьшить расход воды на 30-50%, а также продолжитель­ность тушения пожара.

Водяной пар имеет невысокую эффективность тушения, поэтому его применяют для защиты закрытых технологиче­ских аппаратов и помещений объемом до 500 м 3 , для туше­ния небольших пожаров на открытых площадках и создания завес вокруг защищаемых объектов.

Тонкораспыленная вода (размеры капель менее 100 мкм) получается с помощью специальной аппаратуры, работаю­щей при давлении 200-300 мм вод. ст. Струи воды имеют небольшую величину ударной силы и дальность полета, однако орошают значительную поверхность, более благо­приятны для испарения воды, обладают повышенным охла­ждающим эффектом, хорошо разбавляют горючую среду. Они позволяют не увлажнять излишне материалы при их тушении, способствуют быстрому снижению температуры, осаждению дыма или отравляющих облаков. Тонкораспы­ленную воду используют не только для тушения горящих твердых материалов и нефтепродуктов, но и для защитных действий.

Твердый диоксид углеводорода (углекислота в снегообраз­ном виде) тяжелее воздуха в 1,53 раза, без запаха, плотность 1,97 кг/м 3 . Твердый диоксид углерода имеет широкую область применения, а именно: при тушении горящих электроуста­новок, двигателей, при пожарах в архивах, музеях, выставках и других местах с наличием особых ценностей. При нагрева­нии переходит в газообразное вещество, минуя жидкую фазу, что позволяет применять его для тушения материалов, кото­рые портятся при смачивании (из 1 кг углекислоты образу­ется 500 л газа). Неэлектропроводен, не взаимодействует с горючими веществами и материалами.

Не используют его для тушения загоревшихся магния и его сплавов, металлического натрия, так как при этом про­исходит разложение углекислоты с выделением атомарного кислорода.

Химическая пена сейчас в основном получается в огнету­шителях при взаимодействии щелочного и кислотного рас­творов. Состоит из углекислого газа (80% об), воды (19,7%), пенообразующего вещества (0,3%). Характеристиками пены, определяющими ее огнегасящие свойства, являются стойкость и кратность. Стойкость - это способность пены сохраняться при высокой температуре во времени (воздушно-механическая пена имеет стойкость 30-45 мин), кратность - отноше­ние объема пены к объему жидкости, из которой она получена, достигает 8-12. Химическая пена обладает высокой стойко­стью и эффективностью в тушении многих пожаров. Вслед­ствие электропроводности и химической активности пену не применяют для тушения электро- и радиоустановок, элек­тронной техники, двигателей различного назначения, дру­гих аппаратов и агрегатов.

Воздушно-механическая пена получается смешением в пен­ных стволах или генераторах водного раствора пенообразо­вателя с воздухом. Пена бывает низкой кратности (К < 10), средней (10 < К < 200) и высокой (К > 200). Она обладает необходимой стойкостью, дисперсностью, вязкостью, охлаж­дающими и изолирующими свойствами, которые позволяют использовать ее для тушения твердых материалов, жидких веществ и осуществления защитных действий, для тушения пожаров по поверхности и объемного заполнения горящих помещений. Для подачи пены низкой кратности применяют воздушно-пенные стволы, а для подачи пены средней и высо­кой кратности - генераторы.

Огнетушащие порошковые составы являются универсаль­ными и эффективными средствами тушения пожаров при сравнительно незначительных удельных расходах. ОПС при­меняют для тушения горючих материалов и веществ любого агрегатного состояния, электроустановок под напряжением, металлов, в том числе металлоорганических и других пиро­форных соединений, не поддающихся тушению водой и пеной, а также пожаров при значительных минусовых температурах. Они способны оказывать эффективные действия на подав­ление пламени комбинированно; охлаждением (отнятием теплоты), изоляцией (за счет образования пленки при плав­лении), разбавлением газообразными продуктами разложения порошка или порошковым облаком, химическим торможе­нием реакции горения.

Азот не горюч и не поддерживает горения большинства органических веществ. Его хранят и транспортируют в бал­лонах в сжатом состоянии, используют в основном в стацио­нарных установках. Применяют для тушения натрия, калия, бериллия, кальция и других металлов, которые горят в атмо­сфере диоксида углерода, а также пожаров в технологических аппаратах и электроустановках. Азот нельзя применять для тушения магния, алюминия, лития, циркония и некоторых других металлов, способных образовывать нитриды, обла­дающих взрывчатыми свойствами и чувствительных к удару. Для их тушения используют аргон.

Галоидоуглероды и составы на их основе (огнетуша- щие средства химического торможения реакции горения) эффективно подавляют горение газообразных, жидких, твердых горючих веществ и материалов при любых видах пожаров. По эффективности они превышают инертные газы в 10 раз и более. Галоидоуглероды и составы на их основе являются летучими соединениями, представляют собой газы или легкоиспаряющиеся жидкости, которые плохо растворяются в воде, но хорошо смешиваются со мно­гими органическими веществами. Они обладают хорошей смачиваемой способностью, не электропроводны, имеют высокую плотность в жидком и в газообразном состоянии, что обеспечивает возможность образования струи, прони­кающей в пламя.

Эти огнетушащие вещества можно применять для поверх­ностного, объемного и локального тушения пожаров. Галоидо-углеводороды и составы на их основе практически можно использовать при любых отрицательных температурах. С большим эффектом их можно использовать при ликвидации горения волокнистых материалов; электроустановок и оборудования, находящегося под напряжением; для защиты от пожаров транспортных средств; вычислительных центров, особо опасных цехов химических предприятий, окрасочных камер, сушилок, складов с горючими жидкостями, архивов, музейных залов, других объектов особой ценности, повышен ной пожаро- и взрывоопасности.

Недостатками этих огнетушащих средств являются: кор­розионная активность; токсичность; их нельзя применять для тушения материалов, содержащих в своем составе кислород, а также металлов, некоторых гидридов металлов и многих металлоорганических соединений. Хладоны не ингибируют горения и в тех случаях, когда в качестве окислителя участ­вует не кислород, а другие вещества.

Технические средства пожаротушения. Обеспечение предприятий и регионов необходимым объемом воды для пожаротушения обычно производится из общей (городской) сети водопровода или из пожарных водоемов и емкостей. Требования к системам водоснабжения изложены в СНиП 2.04.02-84* «Водоснабжение. Наружные сети и сооружения» и в СНиП 2.04.01-85* «Внутренний водопровод и канали­зация зданий».

Противопожарные водопроводы принято подразделять на водопроводы низкого и среднего давления. Напор при пожа­ротушении от водопроводной сети низкого давления при расчетном расходе должен быть не менее 10 м, при этом тре­буемый для пожаротушения напор воды создается пере­движными насосами, устанавливаемыми на гидранты. В сети высокого давления должна обеспечиваться высота компакт­ной струи не менее 10 м при полном расчетном расходе воды и расположении ствола на уровне наивысшей точки самого высокого здания. Системы высокого давления более доро­гие вследствие необходимости использовать трубопроводы повышенной прочности, а также дополнительные водонапор­ные баки водопроводной станции.

Системы высокого давления предусматривают на промыш­ленных предприятиях, удаленных от пожарных частей более чем на 2 км, а также в населенных пунктах с числом жителей до 500 тыс. человек.

Принципиальная схема устройства системы объединенного водоснабжения показана на рис. 14.2. Вода из естественного источника поступает в водоприемник и далее насосами стан­ции первого подъема подается в сооружение на очистку, затем по водоводам в пожарорегулирующее сооружение (водона­порную башню) и далее по магистральным водопроводным линиям к вводам в здания. Устройство водонапорных соору­жений связано с неравномерностью бытового потребления воды по часам суток. Как правило, сеть противопожарного


водопровода делают кольцевой, обеспечивающей высокую надежность водообеспечения.

Нормируемый расход воды на пожаротушение складыва­ется из расходов на наружное и внутреннее пожаротушение. При нормировании расхода воды на наружное пожаротуше­ние исходят из возможного числа одновременных пожаров в населенном пункте, возникающих в течение трех смежных часов в зависимости от численности жителей и этажности зда­ний. Нормы расхода и напор воды во внутренних водопро­водах в общественных, жилых и вспомогательных зданиях регламентируются СНиП 2.04.01-85* в зависимости от их этажности, длины коридоров, объема, назначения.

Для пожаротушения в помещениях используют автома­тические огнегасительные устройства. Наиболее широкое распространение получили установки, которые в качестве распределительных устройств используют спринклерные или дренчерные головки.

Спринклерная головка (рис. 14.3) - это прибор, автома­тически открывающий выход воды при повышении темпера­туры внутри помещения, вызванной возникновением пожара. Датчиком является сама спринклерная головка, снабженная легкоплавким замком, который расплавляется при повышении температуры и открывает отверстие в трубопроводе с водой над очагом пожара. Спринклерная установка состоит из сети водопроводных питательных и оросительных труб, установ­ленных под перекрытием. В оросительные трубы на опреде­ленном расстоянии друг от друга ввернуты спринклерные


головки. Один спринклер устанавливают на площади 6-9 м 2 помещения в зависимости от пожарной опасности производ­ства. Если в защищаемом помещении температура воздуха может опускаться ниже +4 °С, то такие объекты защищают воздушными спринклерными системами, отличающимися от водяных тем, что эти системы заполнены водой только до контрольно-сигнального устройства, распределительные трубопроводы, расположенные выше этого устройства в неота­пливаемом помещении, заполняются воздухом, нагнетаемым специальным компрессором.


Дренчерные установки (рис. 14.4) по устройству близки к спринклерным, но отличаются от последних тем, что ороси­тели на распределительных трубопроводах не имеют легко­плавкого замка и отверстия постоянно открыты. Дренчерные системы предназначены для образования водяных завес, для защиты здания от возгорания при пожаре в соседнем соору­жении, для образования водяных завес в помещении с целью

предупреждения распространения огня и для противопожар­ной защиты в условиях повышенной пожарной опасности. Дренчерная система включается вручную или автоматически по сигналу автоматического извещателя о пожаре с помощью контрольно-пускового узла, размещаемого на магистраль­ном трубопроводе.

В спринклерных и дренчерных системах могут приме­няться и воздушно-механические пены.

К первичным средствам пожаротушения относятся огне­тушители, песок, земля, шлаки, покрывала, щиты, листовые материалы.

Огнетушители предназначены для тушения загораний и пожаров в начальной стадии их возникновения. В зави­симости от условий тушения загораний созданы различные типы огнетушителей, которые подразделяют на две основ­ные группы: переносные и передвижные.

По виду огнетушащего вещества огнетушители класси­фицируются:

А) на пенные (ОП): - химические пенные (ОХП);

Воздушно-пенные (ОВП);

Б) газовые:

Углекислотные (ОУ) - подают углекислый газ в виде газа или снега (в качестве заряда применен жидкий углекис­лый газ);

Хладоновые (ОХ) аэрозольные и углекислотно-бромэтиловые - подают парообразующие огнетушащие веще­ства;

В) порошковые (ОП) - подают огнетушащие порошки;

Г) водные (ОВ) - делятся по виду выходящей струи (мел­кораспыленной, распыленной и компактной).

Стандарт устанавливает метод испытания на распространение пламени по материалам поверхностных слоев конструкций полов и кровель, а также классификацию их по группам распространения пламени. Стандарт применяется для всех однородных и слоистых горючих строительных материалов, используемых в поверхностных слоях конструкций полов и кровель.

Обозначение: ГОСТ 30444-97
Название рус.: Материалы строительные. Метод испытания на распространение пламени
Статус: действует
Дата актуализации текста: 05.05.2017
Дата добавления в базу: 12.02.2016
Дата введения в действие: 20.03.1998
Утвержден: 20.03.1998 Госстрой России (Russian Federation Gosstroy 18-21)23.04.1997 Межгосударственная научно-техническая комиссия по стандартизации и техническому нормированию в стоительстве (МНТКС)
Опубликован: ГУП ЦПП (CPP GUP 1998 г.)
Ссылки для скачивания:

ГОСТ Р51032-97

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

МАТЕРИАЛЫ СТРОИТЕЛЬНЫЕ

МЕТОД ИСПЫТАНИЯ
НА РАСПРОСТРАНЕНИЕ ПЛАМЕНИ

МИНСТРОЙ РОССИИ

Москва

Предисловие

1 РАЗРАБОТАН Государственнымцентральным научно-исследовательским и проектно-экспериментальным институтомкомплексных проблем строительных конструкций и сооружений им. В. А. Кучеренко(ЦНИИСК им. Кучеренко) Государственного научного центра «Строительство» (ГНЦ«Строительство»), Всероссийским научно-исследовательским институтомпротивопожарной обороны (ВНИИПО) МВД России с участием Московского институтапожарной безопасности МВД России

ВНЕСЕН Управлениемстандартизации, технического нормирования и сертификации Минстроя России

2 ПРИНЯТ и введен в действие постановлениемМинстроя России от 27.12.96 г. № 18-93

Введение

Настоящий стандартразработан на основе проекта стандарта ИСО/ПМС 9239.2 «Основные испытания -Реакция на огонь - Распространение пламени по горизонтальной поверхностипокрытий пола под действием радиационного теплового источника зажигания».

Размеры даны справочно в мм

1 - испытательная камера; 2 - платформа; 3 - держатель образца; 4 - образец; 5 - дымоход;
6 - вытяжной зонт; 7 - термопара; 8 - радиационная панель; 9 - газовая горелка;
10 - дверца со смотровым окном

Рисунок 1 - Установка для испытаний на распространение пламени

Установка состоит изследующих основных частей:

1) испытательная камера сдымоходом и вытяжным зонтом;

2) источник лучистоготеплового потока (радиационная панель);

3) источник зажигания(газовая горелка);

4) держатель образца иустройство для введения держателя в испытательную камеру (платформа).

Установку оборудуютприборами для регистрации и измерения температуры в испытательной камере идымоходе, величины поверхностной плотности теплового потока, скорости потокавоздуха в дымоходе.

7.2 Испытательную камеру идымоход () изготавливают из листовойстали толщиной от 1,5 до 2 мм и облицовывают изнутри негорючимтеплоизоляционным материалом толщиной не менее 10 мм.

Переднюю стенку камерыоборудуют дверцей со смотровым окном из термостойкого стекла. Размерысмотрового окна должны обеспечивать возможность наблюдения за всей поверхностьюобразца.

7.3 Дымоход соединяется скамерой через проем. Над дымоходом устанавливают зонт вытяжной вентиляции.

Производительность вытяжноговентилятора должна составлять не менее 0,5 м 3 /с.

7.4 Радиационная панельимеет следующие размеры:

Электрическая мощностьрадиационной панели должна составлять не менее 8 кВт.

Угол наклона радиационнойпанели () к горизонтальной плоскостидолжен составлять (30 ± 5) °.

7.5 Источником зажиганияявляется газовая горелка с диаметром выходного отверстия (1,0 ± 0,1) мм,обеспечивающая формирование факела пламени длиной от 40 до 50 мм. Конструкциягорелки должна обеспечивать возможность ее вращения относительно горизонтальнойоси. При испытании пламя газовой горелки должно касаться точки «ноль» («0»)продольной оси образца ().

Размеры даны справочно в мм

1 - держатель; 2 - образец; 3 - радиационная панель; 4 - газовая горелка

Рисунок 2 - Схема взаимного расположения радиационной панели,
образца и газовой горелки

7.6 Платформу для размещениядержателя образца изготавливают из жаропрочной или нержавеющей стали. Платформуустанавливают на направляющих в нижней части камеры вдоль ее продольной оси. Повсему периметру камеры между ее стенками и краями платформы следует обеспечитьзазор общей площадью (0,24 ± 0,04) м 2 .

Расстояние от экспонируемойповерхности образца до потолка камеры должно составлять (710 ± 10) мм.

7.7 Держательобразца изготавливают из жаропрочной стали толщиной (2,0 ± 0,5) мм и оснащаютприспособлениями для крепления образца ().

1 - держатель; 2 - крепежные элементы

Рисунок 3 - Держатель образца

7.8 Для измерениятемпературы в камере () используюттермоэлектрический преобразователь по ГОСТ 3044 с диапазоном измерения от 0 до600 °С и толщиной не более 1 мм. Для регистрации показаний термоэлектрическогопреобразователя используют приборы с классом точности не более 0,5.

7.9 Для измерения ППТПиспользуют водоохлаждаемые приемники теплового излучения с диапазоном измеренияот 1 до 15 кВт/м 2 . Погрешность измерения должна составлять не более8 %.

Для регистрации показанийприемника теплового излучения используют регистрирующий прибор с классомточности не более 0,5.

7.10 Для измерения ирегистрации скорости потока воздуха в дымоходе используют анемометры сдиапазоном измерения от 1 до 3 м/с и основной относительной погрешностью неболее 10 %.

8 Калибровка установки

8.1 Общие положения

9.6 Измеряют длинуповрежденной части образца по его продольной оси для каждого из пяти образцов.Измерения проводят с точностью до 1 мм.

Повреждением считаетсявыгорание и обугливание материала образца в результате распространенияпламенного горения по его поверхности. Оплавление, коробление, спекание,вспучивание, усадка, изменение цвета, формы, нарушение целостности образца(разрывы, сколы поверхности и т.п.) повреждением не являются.

10 Обработка результатов испытания

10.1 Длину распространенияпламени определяют как среднее арифметическое значение по длине поврежденнойчасти пяти образцов.

10.2 Величину КППТПустанавливают на основании результатов измерения длины распространения пламени(10.1) по графику распределения ППТП по поверхности образца, полученному прикалибровке установки.

10.3 При отсутствиивоспламенения образцов или длине распространения пламени менее 100 мм следуетсчитать, что КППТП материала составляет более 11 кВт/м 2 .

10.4 В случаепринудительного гашения образца по истечении 30 мин испытания величину ППТПопределяют по результатам измерения длины распространения пламени на моментгашения и условно принимают эту величину равной критической.

10.5 Для материалов санизотропными свойствами при классификации используют наименьшую из полученныхвеличин КППТП.

11 Протокол испытания

В протоколе испытанияприводят следующие данные:

Наименование испытательнойлаборатории;

Наименование заказчика;

Наименование изготовителя(поставщика) материала;

Описание материала илиизделия, техническую документацию, а также торговую марку, состав, толщину,плотность, массу и способ изготовления образцов, характеристику экспонируемойповерхности, для слоистых материалов - толщину каждого слоя и характеристикуматериала каждого слоя;

Параметры распространенияпламени (длина распространения пламени, КППТП), а также время воспламененияобразца;

Вывод о группераспространения материала с указанием величины КППТП;

Дополнительные наблюденияпри испытании образца: выгорание, обугливание, плавление, вспучивание, усадка,расслоение, растрескивание, а также другие особые наблюдения прираспространении пламени.

12 Требования безопасности

Помещение, в которомпроводят испытания, должно быть оборудовано приточно-вытяжной вентиляцией.Рабочее место оператора должно удовлетворять требованиям электробезопасности поГОСТ12.1.019 и санитарно-гигиеническим требованиям по ГОСТ12.1.005.

Ключевые слова: материалы строительные, распространение пламени, поверхностная плотность теплового потока, критическая плотность теплового потока, длина распространенияпламени, образцы для испытания, испытательная камера, радиационнаяпанель