Мышьяк: яд или сексуальный стимулятор? Мышьяк – опасное, но необходимое вещество

Мышьяк (= Арсен) (As)

Основное оружие отравителей или сексуальный стимулятор?

Мышьяк относят к условно эссенциальным, иммунотоксическим для организма человека элементам.

С древних времен мышьяк был известен и как лекарство, и как яд . В Риме славились яды Локусты; в Венеции, например, при дворе держали специалистов–отравителей. И главным компонентом почти всех ядов был мышьяк. Существует предположение, что соединениями мышьяка был отравлен Наполеон на острове Святой Елены .

Симптомы мышьяковистого отравления – металлический привкус во рту, рвота, сильные боли в животе, позже – судороги, паралич, смерть.

В настоящее время установлено, что в малых дозах мышьяк необходим организму человека : он препятствует потере фосфора . Подобно тому, как витамин D регулирует фосфорно-кальциевый обмен, так мышьяк регулирует обмен фосфорный.
Но если концентрация мышьяка в продуктах питания или в почве переступит границу и приблизится к ядовитым дозам, то число смертельных случаев, вызванных раком гортани, глаз или белокровием, увеличится.

Суточная потребность организма человека – 12–15 мкг. Дефицит этого элемента в организме может развиться при его недостаточном поступлении (1 мкг/день и менее).

Всего в организме человека содержится около 15 мг мышьяка.

В организм человека соединения мышьяка попадают с питьевой и минеральной водой, виноградными винами и соками, морепродуктами, медицинскими препаратами, пестицидами и гербицидами.

Около 80% мышьяка всасывается в желудочно-кишечном тракте, 10% поступает через легкие и около 1% – через кожу.

Более 90% неорганических соединений мышьяка растворимы и хорошо абсорбируются. Далее неорганический мышьяк перемещается в печень, где он метилируется. Мышьяк накапливается в легких, печени, коже и тонком кишечнике. Депонируется мышьяк преимущественно в ретикуло-эндотелиальной системе, вероятно, в результате связи арсенита с SH–группами белков, которых относительно больше в этих тканях.
Через 24 часа после поступления из организма выводится 30% мышьяка с мочой и около 4% – с калом. Незначительные количества удаляются с потом, с выпавшими волосами, отслоившейся кожей и желчью.

Биологическая роль в организме человека . Известно, что мышьяк взаимодействует с тиоловыми группами белков, цистеином, глутатионом, липоевой кислотой. Возможно, мышьяк участвует в некоторых ферментативных реакциях. Как активатор ферментов мышьяк, вероятно, действует как заместитель фосфата. Как ингибитор, мышьяк, очевидно, реагирует с сульфгидрильными группами ферментов.

Мышьяк влияет на окислительные процессы в митохондриях, участвует в нуклеиновом обмене, т.е. имеет прямое отношение к синтезу белка, и необходим для синтеза гемоглобина, хотя и не входит в его состав.

Известно, что в организме млекопитающих мышьяк содержится в восстановленных формах As, NaAs 3+ , которые рассматривают как потенциальные стимуляторы образования металлотионеина с CdCl 2 .

Считалось, что «микродозы мышьяка, вводимые с осторожностью в растущий организм, способствуют росту костей человека и животных в длину и толщину, в отдельных случаях рост костей может быть вызван микродозами мышьяка даже после окончания общего роста». Однако эти данные не нашли научного подтверждения.

В настоящее время исследуется влияние микродоз препаратов, содержащих мышьяк, как противораковых средств .

Синергисты и антагонисты мышьяка . Мышьяк может усиленно накапливаться в организме при недостаточности селена , и, тем самым, способствовать дефициту селена.
Антагонистами мышьяка является сера , фосфор , селен , витамины С, Е и аминокислоты.
Мышьяк тормозит усвоение организмом цинка , селена, аскорбиновой кислоты, витаминов А и Е, аминокислот.

Признаки недостаточности мышьяка : у человека – дерматиты, анемии; у животных – снижение роста и ненормальное воспроизведение, характеризующийся высокой перинатальной смертностью.
Другие известные симптомы: пониженная концентрация триглицеридов сыворотки крови.

Органами–мишенями при избыточном содержании мышьяка в организме является костный мозг, желудочно-кишечный тракт, кожа, легкие и почки. Мышьяк и все его соединения ядовиты в той или иной степени .

Мышьяк относится к так называемым «тиоловым ядам» . Механизм его токсичности связан с нарушением обмена серы, селена и фосфора. Токсичность мышьяка зависит от химических свойств и снижается в следующем порядке ряда: арсин AsH3 > неорганический As 3+ > органический As 3+ > неорганический As 5+ > соединения арсония AsH 4+ > элементарный мышьяк.

Существует достаточное количество доказательств канцерогенности неорганических соединений мышьяка . Высокий уровень смертности от рака легких зарегистрирован среди рабочих, занятых на производстве пестицидов, добыче золота и выплавке сплавов мышьяка с другими металлами, а также цветных металлов и особенно меди. В результате длительного употребления загрязненной мышьяком воды или лекарственных препаратов, нередко наблюдается развитие низкодифференцированного рака кожи (рак Боуэна). Вероятно, гемангиоэндотелиома печени также является арсенозависимой опухолью.

Небольшой избыток мышьяка в пищевом рационе вызывает в организме животных аномальную плодовитость , которая характеризуется значительным повышением половой активности и фертильности .

Широкую огласку получила техногенная экологическая катастрофа на юге Индии – из-за повышенного отбора воды из водоносных горизонтов мышьяк стал попадать в питьевую воду. Это вызвало токсическое и онкологическое поражение у десятков тысяч людей.

Причины избытка мышьяка : избыточное поступление (постоянный контакт с мышьяком, загрязнение окружающей среды, курение, злоупотребление виноградным вином, длительное введение препаратов сальварсана), нарушение регуляции обмена мышьяка; усиленное накопление в организме мышьяка при недостаточности селена.

Основные проявления избытка мышьяка : раздражительность, головные боли, нарушение функций печени, развитие жирового гепатоза; кожные аллергические реакции, экзема, дерматит, зуд, язвы, депигментация кожи, ладонно-подошвенный гиперкератоз; конъюнктивит; поражения системы дыхания (фиброз, аллергозы, прорыв носовой перегородки, опухоли); поражения сосудов (в первую очередь – нижних конечностей – ендоангиит) нефропатия, увеличение риска развития новообразований кожи, печени, легких.

При остром отравлении мышьяком наблюдаются боли в животе, рвота, диарея, угнетение центральной нервной системы; развиваются: внутрисосудистый гемолиз, острая почечная, печеночная недостаточность, кардиогенный шок. Сходство симптомов отравления мышьяком с симптомами холеры длительное время позволяло успешно использовать соединения мышьяка (чаще всего – триоксид мышьяка) как смертельный яд.

На территориях, где в почве и воде имеется избыток мышьяка, он накапливается в щитовидной железе у людей и вызывает эндемический зоб.

Мышьяк в малых дозах канцерогенен. Однако, в течение длительного времени (до середины 1950–х гг.) его использовали как лекарство, «улучшающие кровь». Такое использование в большинстве случаев приводило к развитию онкологических заболеваний.

Отдаленные последствия интоксикации мышьяком : снижение остроты слуха у детей, поражения нервной системы (энцефалопатии, нарушения речи, координации движений, судороги, психозы, полиневриты с болевым синдромом), нарушение трофики мышц, иммунодефицит.

Мышьяк необходим : при воспалительных процессах, вызванных протозойным и микробным поражением, при некоторых формах аллергии, при анемии, для повышения аппетита.
При отравлении человека или домашних животных (собак, птиц, свиней, коров) большими дозами селена мышьяк является противоядием. В экспериментах, проведенных на мышах, удалось уменьшить заболеваемость раком именно с помощью специально подобранных доз мышьяка. В воде мышьяка менее 10 мкг/л, однако, в некоторых регионах мира (Индия, Бангладеш, Тайвань, Мексика) содержание этого элемента достигает более 1 мг/л, что является причиной массовых хронических отравлений мышьяком и вызывает так называемую болезнь «черной стопы».

Мышьяк - химический элемент группы азота (группа 15 таблицы Менделеева). Это серое с металлическим блеском хрупкое вещество (α-мышьяк) с ромбоэдрической кристаллической решеткой. При нагревании до 600°C As сублимирует. При охлаждении паров возникает новая модификация — желтый мышьяк. Выше 270°C все формы As переходят в черный мышьяк.

История открытия

О том, что такое мышьяк, было известно задолго до признания его химическим элементом. В IV в. до н. э. Аристотель упоминал о веществе под названием «сандарак», которое, как теперь полагают, было реальгаром, или сульфидом мышьяка. А в I веке н. э. писатели Плиний старший и Педаний Диоскорид описывали аурипигмент - краситель As 2 S 3 . В XI в. н. э. различались три разновидности «мышьяка»: белый (As 4 O 6), желтый (As 2 S 3) и красный (As 4 S 4). Сам элемент, вероятно, впервые был выделен в XIII веке Альбертом Великим, который отметил появление металлоподобного вещества, когда арсеникум, другое название As 2 S 3 , был нагрет с мылом. Но уверенности в том, что этот ученый-естествоиспытатель получил чистый мышьяк, нет. Первое подлинное свидетельство о выделении чистого датировано 1649 годом. Немецкий фармацевт Иоганн Шредер приготовил мышьяк, нагревая его оксид в присутствии угля. Позже Никола Лемери, французский врач и химик, наблюдал образование этого химического элемента при нагревании смеси его оксида, мыла и поташа. К началу XVIII века мышьяк уже был известен и как уникальный полуметалл.

Распространенность

В земной коре концентрация мышьяка невелика и составляет 1,5 промилле. Он встречается в почве и минералах и может попасть в воздух, воду и грунт благодаря ветровой и водной эрозии. Кроме того, элемент поступает в атмосферу из других источников. В результате извержения вулканов в воздух выделяется около 3 тыс. т мышьяка в год, микроорганизмы образуют 20 тыс. т летучего метиларсина в год, а в результате сжигания ископаемого топлива за тот же период выделяется 80 тыс. т.

Несмотря на то что As - смертельный яд, он является важной составляющей питания некоторых животных и, возможно, человека, хотя необходимая доза не превышает 0,01 мг/сутки.

Мышьяк крайне трудно перевести в водорастворимое или летучее состояние. Тот факт, что он довольно мобилен, означает, что большие концентрации вещества в каком-то одном месте появиться не могут. С одной стороны, это хорошо, но с другой - легкость, с которой он распространяется, является причиной того, что загрязнение мышьяком становится все большей проблемой. Из-за деятельности человека, в основном за счет добычи и плавки, обычно немобильный химический элемент мигрирует, и сейчас его можно найти не только в местах его естественной концентрации.

Количество мышьяка в земной коре составляет около 5 г на тонну. В космосе его концентрация оценивается как 4 атома на миллион атомов кремния. Этот элемент широко распространен. Небольшое его количество присутствует в самородном состоянии. Как правило, образования мышьяка чистотой 90-98% встречаются вместе с такими металлами, как сурьма и серебро. Большая его часть, однако, входит в состав более чем 150 различных минералов - сульфидов, арсенидов, сульфоарсенидов и арсенитов. Арсенопирит FeAsS является одним из самых распространенных As-содержащих минералов. Другие распространенные соединения мышьяка - минералы реальгар As 4 S 4, аурипигмент As 2 S 3, леллингит FeAs 2 и энаргит Cu 3 AsS 4 . Также часто встречается оксид мышьяка. Большая часть этого вещества является побочным продуктом выплавки медных, свинцовых, кобальтовых и золотых руд.

В природе существует только один стабильный изотоп мышьяка - 75 As. Среди искусственных радиоактивных изотопов выделяется 76 As c периодом полураспада 26,4 ч. Мышьяк-72, -74 и -76 используются в медицинской диагностике.

Промышленное производство и применение

Металлический мышьяк получают при нагреве арсенопирита до 650-700 °C без доступа воздуха. Если же арсенопирит и другие металлические руды нагревать с кислородом, то As легко вступает с ним в соединение, образуя легко возгоняемый As 4 O 6 , также известный как «белый мышьяк». Пары оксида собирают и конденсируют, и позже очищают повторной возгонкой. Большая часть As производится путем его восстановления углеродом из белого мышьяка, полученного таким образом.

Мировое потребление металлического мышьяка является относительно небольшим - всего несколько сотен тонн в год. Большая часть того, что потребляется, поступает из Швеции. Он используется в металлургии из-за его металлоидных свойств. Около 1% мышьяка применяется в производстве свинцовой дроби, так как он улучшает округлость расплавленной капли. Свойства подшипниковых сплавов на основе свинца улучшаются как по тепловым, так и по механическим характеристикам, когда они содержат около 3% мышьяка. Наличие малого количества этого химического элемента в свинцовых сплавах закаляет их для использования в аккумуляторных батареях и кабельной броне. Небольшие примеси мышьяка повышают коррозионную стойкость и тепловые свойства меди и латуни. В чистом виде химический элементарный As используется для нанесения бронзового покрытия и в пиротехнике. Высокоочищенный мышьяк находит применение в полупроводниковой технике, где он используется с кремнием и германием, а также в форме арсенида галлия (GaAs) в диодах, лазерах и транзисторах.

Соединения As

Так как валентность мышьяка равна 3 и 5, и он имеет ряд степеней окисления от -3 до +5, элемент может образовывать различные виды соединений. Наиболее важное коммерческое значение имеют его формами которых являются As 4 O 6 и As 2 O 5 . Мышьяковистый оксид, широко известный как белый мышьяк, - это побочный продукт обжига руд меди, свинца и некоторых других металлов, а также арсенопирита и сульфидных руд. Он является исходным материалом для большинства других соединений. Кроме того, он используется в пестицидах, служит обесцвечивающим веществом в производстве стекла и консервантом для кож. Пятиокись мышьяка образуется при воздействии окислителя (например, азотной кислоты) на белый мышьяк. Он является основным ингредиентом инсектицидов, гербицидов и клея для металла.

Арсин (AsH 3), бесцветный ядовитый газ, состоящий из мышьяка и водорода, - это еще одно известное вещество. Вещество, называемое также мышьяковистым водородом, получают путем гидролиза металлических арсенидов и восстановления металлов из соединений мышьяка в растворах кислот. Он нашел применение как легирующая добавка в полупроводниках и боевой отравляющий газ. В сельском хозяйстве большое значение имеют мышьяковая кислота (H 3 AsO 4), арсенат свинца (PbHAsO 4) и арсената кальция [Са 3 (AsO 4) 2 ], которые используются для стерилизации почвы и борьбы с вредителями.

Мышьяк - химический элемент, образующий множество органических соединений. Какодин (СН 3) 2 As−As(СН 3) 2 , например, используется при подготовке широко используемого десиканта (осушающего средства) - какодиловой кислоты. Сложные органические соединения элемента применяются в лечении некоторых заболеваний, например, амебной дизентерии, вызванной микроорганизмами.

Физические свойства

Что такое мышьяк с точки зрения его физических свойств? В наиболее стабильном состоянии он представляет собой хрупкое твердое вещество стального серого цвета с низкой тепловой и электрической проводимостью. Хотя некоторые формы As являются металлоподобными, отнесение его к неметаллам - это более точная характеристика мышьяка. Есть и другие виды мышьяка, но они не очень хорошо изучены, особенно желтая метастабильная форма, состоящая из молекул As 4 , подобно белому фосфору Р 4 . Мышьяк возгоняется при температуре 613 °C, и в виде пара он существует как молекулы As 4 , которые не диссоциируют до температуры около 800 °C. Полная диссоциация на молекулы As 2 происходит при 1700 °С.

Строение атома и способность образовывать связи

Электронная формула мышьяка - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 3 - напоминает азот и фосфор в том, что во внешней оболочке есть пять электронов, но он отличается от них наличием 18 электронов в предпоследней оболочке вместо двух или восьми. Добавление 10 положительных зарядов в ядре во время заполнения пяти 3d-орбиталей часто вызывает общее уменьшение электронного облака и увеличение электроотрицательности элементов. Мышьяк в таблице Менделеева можно сравнить с другими группами, которые наглядно демонстрируют эту закономерность. Например, общепризнанно, что цинк является более электроотрицательным, чем магний, а галлий - чем алюминий. Однако в последующих группах эта разница уменьшается, и многие не согласны с тем, что германий электроотрицательнее кремния, несмотря на обилие химических доказательств. Подобный переход от 8- к 18-элементной оболочке от фосфора к мышьяку может увеличить электроотрицательность, но это остается спорным.

Сходство внешней оболочки As и P говорит о том, они могут образовывать 3 на атом при наличии дополнительной несвязанной электронной пары. Степень окисления должна, следовательно, быть +3 или -3, в зависимости от относительной взаимной электроотрицательности. Строение мышьяка также говорит о возможности использования внешней d-орбитали для расширения октета, что позволяет элементу образовывать 5 связей. Она реализуется только при реакции с фтором. Наличие свободной электронной пары для образования комплексных соединений (через донорство электронов) в атоме As проявляется гораздо меньше, чем у фосфора и азота.

Мышьяк стабилен в сухом воздухе, но во влажном покрывается черным оксидом. Его пары легко сгорают, образуя As 2 O 3 . Что такое мышьяк в свободном состоянии? Он практически не подвержен воздействию воды, щелочей и неокисляющих кислот, но окисляется азотной кислотой до состояния +5. С мышьяком реагируют галогены, сера, а многие металлы образуют арсениды.

Аналитическая химия

Вещество мышьяк качественно можно обнаружить в виде желтого аурипигмента, выпадающего в осадок под действием 25% раствора соляной кислоты. Следы As, как правило, определяются путем его преобразования в арсин, который можно обнаружить с помощью теста Марша. Арсин термически разлагается, образуя черное зеркало из мышьяка внутри узкой трубки. По методу Гутцайта пробник, пропитанный под действием арсина темнеет из-за выделения ртути.

Токсикологическая характеристика мышьяка

Токсичность элемента и его производных широко изменяется в значительных пределах, от чрезвычайно ядовитого арсина и его органических производных до просто As, который относительно инертен. О том, что такое мышьяк, говорит применение его органических соединений в качестве боевых отравляющих веществ (люизит), везиканта и дефолианта («Агент блю» на основе водной смеси 5% какодиловой кислоты 26% ее натриевой соли).

В целом производные данного химического элемента раздражают кожу и вызывают дерматит. Также рекомендуется защита от вдыхания мышьяк-содержащей пыли, но большая часть отравлений происходит при его употреблении внутрь. Предельно допустимая концентрация As в пыли за восьмичасовой рабочий день составляет 0,5 мг/м 3 . Для арсина доза снижается до 0,05 части на миллион. Помимо использования соединений данного химического элемента в качестве гербицидов и пестицидов, применение мышьяка в фармакологии позволило получить сальварсан - первый успешный препарат против сифилиса.

Воздействие на здоровье

Мышьяк является одним из наиболее токсичных элементов. Неорганические соединения данного химического вещества в естественных условиях встречаются в небольших количествах. Люди могут подвергаться воздействию мышьяка через пищу, воду и воздух. Экспозиция может также произойти при контакте кожи с зараженной почвой или водой.

Воздействию вещества также подвержены люди, которые с ним работают, живут в домах, построенных из обработанной им древесины, и на землях сельскохозяйственного назначения, где в прошлом применялись пестициды.

Неорганический мышьяк может вызывать различные последствия для здоровья человека, такие как раздражение желудка и кишечника, снижение производства красных и белых клеток крови, изменение кожи и раздражение легких. Предполагается, что поглощение значительного количества этого вещества может увеличить шансы развития рака, особенно рака кожи, легких, печени и лимфатической системы.

Очень высокие концентрации неорганического мышьяка являются причиной бесплодия и выкидышей у женщин, дерматитов, снижения сопротивляемости организма инфекциям, проблем с сердцем и повреждений мозга. Кроме того, этот химический элемент способен повредить ДНК.

Смертельная доза белого мышьяка равна 100 мг.

Органические соединения элемента ни рака, ни повреждений генетического кода не вызывают, но высокие дозы могут нанести вред здоровью человека, например вызвать нервные расстройства или боли в животе.

Свойства As

Основные химико-физические свойства мышьяка следующие:

  • Атомное число - 33.
  • Атомный вес - 74,9216.
  • Температура плавления серой формы - 814 °C при давлении 36 атмосфер.
  • Плотность серой формы - 5,73 г/см 3 при 14 °C.
  • Плотность желтой формы - 2,03 г/см 3 при 18 °C.
  • Электронная формула мышьяка - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 3 .
  • Состояния окисления - -3, +3, +5.
  • Валентность мышьяка - 3, 5.
Мышьяк - химический элемент с атомным номером 33 в периодической системе, обозначается символом As. Представляет собой хрупкий полуметалл стального цвета.

Нахождение в природе мышьяка

Мышьяк - рассеянный элемент. Содержание в земной коре 1,7 10-4% по массе. Это вещество может встречаться в самородном состоянии, имеет вид металлически блестящих серых скорлупок или плотных масс, состоящих из маленьких зернышек. Известно около 200 мышьяк-содержащих минералов. В небольших концентрациях часто содержится в свинцовых, медных и серебряных рудах. Довольно часто встречаются два природных соединения мышьяка с серой: оранжево-красный прозрачный реальгар AsS и лимонно-желтый аурипигмент As2S3. Минерал, имеющий промышленное значение - арсенопирит (мышьяковый колчедан) FeAsS или FeS2 FeAs2, также добывают мышьяковистый колчедан - лёллингит (FeAs2).

Получение мышьяка

Существует множество способов получения мышьяка: сублимацией природного мышьяка, способом термического разложения мышьякового колчедана, восстановлением мышьяковистого ангидрида и др. В настоящее время для получения металлического мышьяка чаще всего нагревают арсенопирит в муфельных печах без доступа воздуха. При этом освобождается мышьяк, пары которого конденсируются и превращаются в твердый мышьяк в железных трубках, идущих от печей, и в особых керамиковых приемниках. Остаток в печах потом нагревают при доступе воздуха, и тогда мышьяк превращается в As2O3. Металлический мышьяк получается в довольно незначительных количествах, и главная часть мышьякосодержащих руд перерабатывается в белый мышьяк, то есть в триоксид мышьяка - мышьяковистый ангидрид As2О3.

Применение мышьяка

  • Применение Мышьяка в металлургии - используется для легирования сплавов свинца, идущих на приготовление дроби, так как при отливке дроби башенным способом капли сплава мышьяка со свинцом приобретают строго сферическую форму, и кроме того, прочность и твёрдость свинца возрастают.
  • Применение в электротехнике - Мышьяк особой чистоты (99,9999 %) используется для синтеза ряда практически очень ценных и важных полупроводниковых материалов - арсенидов и сложных алмазоподобных полупроводников.
  • Применение в качестве красителя - сульфидные соединения мышьяка - аурипигмент и реальгар - используются в живописи в качестве красок.
  • Применение в кожевенной отрасли промышленности - используется в качестве средств для удаления волос с кожи.
  • Применение в пиротехнике - реальгар употребляется для получения «греческого», или «индийского», огня, возникающего при горении смеси реальгара с серой и селитрой (ярко-белое пламя).
  • Применение в медицине - многие из мышьяковых соединений в очень малых дозах применяются в качестве лекарств для борьбы с малокровием и рядом тяжелых заболеваний, так как оказывают клинически значимое стимулирующее влияние на ряд функций организма, в частности, на кроветворение. Из неорганических соединений мышьяка мышьяковистый ангидрид может применяться в медицине для приготовления пилюль и в зубоврачебной практике в виде пасты как некротизирующее лекарственное средство (тот самый «мышьяк», который закладывают в канал зуба перед удалением нерва и пломбированием). В настоящее время препараты мышьяка применяются в зубоврачебной практике редко из-за токсичности и возможности проведения безболезненной денервации зуба под местной анестезией.
  • Применение в производстве стекла - трехокись мышьяка делает стекло «глухим», т.е. непрозрачным. Однако небольшие добавки этого вещества, напротив, осветляют стекло. Мышьяк и сейчас входит в рецептуры некоторых стекол, например, «венского» стекла для термометров и полухрусталя.
Для определения концентраций мышьяка в промышленности часто используется рентгено-флуоресцентный метод анализа состава веществ,что позволяет добиться результатов высокой точности в кратчайшие сроки. Для проведения рентгенофлуоресцентного анализа мышьяка требуются меры предосторожности. Т.к. Мышьяк является отравляеющим веществом.

Самая перспективная область применения мышьяка, несомненно, полупроводниковая техника. Особое значение приобрели в ней арсениды галлия GaAs и индия InAs. Арсенид галлия нужен также для важного направления электронной техники – оптоэлектроники, возникшей в 1963...1965 гг. на стыке физики твердого тела, оптики и электроники. Этот же материал помог создать первые полупроводниковые лазеры.

Почему арсениды оказались перспективными для полупроводниковой техники? Чтобы ответить на этот вопрос, напомним коротко о некоторых основных понятиях физики полупроводников: «валентная зона», «запрещенная зона» и «зона проводимости».

В отличие от свободного электрона, который может обладать любой энергией, электрон, заключенный в атоме, может обладать только некоторыми, вполне определенными значениями энергии. Из возможных значений энергии электронов в атоме складываются энергетические зоны. В силу известного принципа Паули, число электронов в каждой зоне не может быть больше некоего определенного максимума. Если зона пуста, то она, естественно, не может участвовать в создании проводимости. Не участвуют в проводимости и электроны целиком заполненной зоны: раз нет свободных уровней, внешнее электрическое поле не может вызывать перераспределения электронов и тем самым создать электрический ток. Проводимость возможна лишь в частично заполненной зоне. Поэтому тела с частично заполненной зоной относят к металлам, а тела, у которых энергетический спектр электронных состояний состоит из заполненных и пустых зон, – к диэлектрикам или полупроводникам.

Напомним также, что целиком заполненные зоны в кристаллах называются валентными зонами, частично заполненные и пустые – зонами проводимости, а энергетический интервал (или барьер) между ними – запрещенной зоной.

Основное различие между диэлектриками и полупроводниками состоит именно в ширине запрещенной зоны: если для преодоления ее нужна энергия больше 3 эВ, то кристалл относят к диэлектрикам, а если меньше – к полупроводникам.

По сравнению с классическими полупроводниками IV группы – германием и кремнием – арсениды элементов III группы обладают двумя преимуществами. Ширину запрещенной зоны и подвижность носителей заряда в них можно варьировать в более широких пределах. А чем подвижнее носители заряда, тем при больших частотах может работать полупроводниковый прибор. Ширину запрещенной зоны выбирают в зависимости от назначения прибора.

Так, для выпрямителей и усилителей, рассчитанных на работу при повышенной температуре, применяют материал с большой шириной запрещенной зоны, а для охлаждаемых приемников инфракрасного излучения – с малой.

Арсенид галлия приобрел особую популярность потому, что у него хорошие электрические характеристики, которые он сохраняет в широком интервале температур – от минусовых до плюс 500°C. Для сравнения укажем, что арсенид индия, не уступающий GaAs по электрическим свойствам, начинает терять их уже при комнатной температуре, германий – при 70...80, а кремний – при 150...200°C.

Мышьяк используют и в качестве легирующей добавки, которая придает «классическим» полупроводникам (Si, Ge) проводимость определенного типа. При этом в полупроводнике создается так называемый переходный слой, и в зависимости от назначения кристалла его легируют так, чтобы получить переходный слой на различной глубине. В кристаллах, предназначенных для изготовления диодов, его «прячут» поглубже; если же из полупроводниковых кристаллов будут делать солнечные батареи, то глубина переходного слоя – не более одного микрометра.

Мышьяк как ценную присадку используют и в цветной металлургии. Так, добавка к свинцу 0,2...1% As значительно повышает его твердость. Дробь, например, всегда делают из свинца, легированного мышьяком – иначе не получить строго шарообразной формы дробинок.

Добавка 0,15...0,45% мышьяка в медь увеличивает ее прочность на разрыв, твердость и коррозионную стойкость при работе в загазованной среде. Кроме того, мышьяк увеличивает текучесть меди при литье, облегчает процесс волочения проволоки.

Добавляют мышьяк в некоторые сорта бронз, латуней, баббитов, типографских сплавов.

И в то же время мышьяк очень часто вредит металлургам. В производстве стали и многих цветных металлов умышленно идут на усложнение процесса – лишь бы удалить из металла весь мышьяк. Присутствие мышьяка в руде делает производство вредным. Вредным дважды: во-первых, для здоровья людей; во-вторых, для металла – значительные примеси мышьяка ухудшают свойства почти всех металлов и сплавов.

Все соед. мышьяка, р-римые в воде и слабокислых средах (напр., желудочный сок), чрезвычайно ядовиты; ПДК в воздухе мышьяка и его соед. (кроме AsH3) в пересчете на мышьяк 0,5 мг/м3. Соед. As (III) более ядовиты, чем соед. As(V). Из неорг. соед. особенно опасны As2O3 и AsH3. При работе с мышьяком и его соед. необходимы: полная герметизация аппаратуры, удаление пыли и газов интенсивной вентиляцией, соблюдение личной гигиены (противопылевая одежда, очки, перчатки, противогаз), частый медицинский контроль; к работе не допускаются женщины и подростки. При остром отравлении мышьяком наблюдаются рвота, боли в животе, понос, угнетение центр. нервной системы. Помощь и противоядия при отравлении мышьяком: прием водных р-ров Na2S2O3, промывание желудка, прием молока и творога; специфич. противоядие - унитиол. Особая проблема состоит в удалении мышьяка из отходящих газов, технол. вод и побочных продуктов переработки руд и концентратов цветных и редких металлов и железа. Наиб. перспективен способ захоронения мышьяка путем перевода его в практически нерастворимые сульфидные стекла.

Мышьяк известен с глубокой древности. Еще Аристотель упоминал его прир. сернистые соединения. Неизвестно, кто первый получил элементарный мышьяк, обычно это достижение приписывают Альберту Великому ок. 1250. Хим. элементом мышьяк признан А. Лавуазье в 1789.

Таков элемент №33, заслуженно пользующийся скверной репутацией, и тем не менее во многих случаях очень полезный.

Содержание мышьяка в земной коре всего 0,0005%, но этот элемент достаточно активен, и потому минералов, в состав которых входит мышьяк, свыше 120. Главный промышленный минерал мышьяка – арсенопирит FeAsS. Крупные медно-мышьяковые месторождения есть в США, Швеции, Норвегии и Японии, мышьяково-кобальтовые – в Канаде, мышьяково-оловянные – в Боливии и Англии. Кроме того, известны золото-ышьяковые месторождения в США и Франции. Россия располагает многочисленными месторождениями мышьяка в Якутии и на Кавказе, в Средней Азии и на Урале, в Сибири и на Чукотке, в Казахстане и в Забайкалье. Мышьяк – один из немногих элементов, спрос на которые меньше, чем возможности их производства. Мировое произ-во мышьяка (без социалистич. стран) в пересчете на As2O3 ок. 50 тыс. т (1983); из них получают ~11 т элементарного мышьяка особой чистоты для синтеза полупроводниковых соединений.

Рентгенофлуоресцентный метод анализа мышьяка довольно прост и безопасен, в отличии от химического метода. Чистый мяшьяк прессуется в таблетки и используется как эталон. ГОСТ 1293.4-83, ГОСТ 1367.1-83, ГОСТ 1429.10-77, ГОСТ 2082.5-81, ГОСТ 2604.11-85, ГОСТ 6689.13-92, ГОСТ 11739.14-99 Определение производится с помощью рентгенофлуоресцентного спектрометра. Наиболее зарекомендовавшими себя в данной области являютcя спектрометры edx 3600 B и edx 600.

Элементарный мышьяк находит ограниченное применение в виде добавок к сплавам (на основе Cu, Pb и Sn) и полупроводниковым материалам. Мышьяк особой чистоты используют для синтеза полупроводниковых соединений.

Элементарный мышьяк используется главным образом в качестве добавки (порядка 0,3%) к свинцу при выработке дроби. Добавка эта повышает твердость металла и сообщает ему способность застывать в виде капель строго шарообразной формы.

As 2 O 3 используют, как консервирующее средство при выделке –мехов и кож, в производстве оптических стекол, как инсектицид, в аналитической химии для приготовления эталонных растворов мышьяка, как некротизирующее лекарственное средство. As 2 O 5 применяют как гербицид, антисептик для пропитки древесины. Оксиды As входят в состав образующихся на поверхности полупроводниковых соединений (GaAs, InAs и др.) тонких оксидных пленок, определяющих электрофизические параметры интегральных устройств на основе этих полупроводников.

В системах As-S и As-Se наблюдаются обширные области стеклообразования. Стекла халькогенидов мышьяка – полупроводниковые материалы, используемые в электронике, оптике, бессеребряной фотографии, электрофотографии, запоминающих устройствах. Аурипигмент и реальгар – пигменты, применяемые для приготовления красок для живописи.

Мышьякорганические соединения применяют в качестве лекарственных средств (например, новарсенол, минарсон, осарсол и др.), в электронной промышленности (например, R3As –для легирования эпитаксиальных слоев кремния), в качестве реагентов в аналитической химии.

Соединения мышьяка применяются в медицине, при выделке кож и мехов, в стекольном, фарфоровом и других производствах. Важной областью их использования является сельское хозяйство, где различные производные мышьяка служат одним из основных средств борьбы с вредителями культурных растений.

Все соединения мышьяка, растворимые в воде и слабокислых средах (например, желудочный сок), чрезвычайно ядовиты. ПДК в воздухе мышьяка и его соединений (кроме AsH 3) в пересчете на мышьяк 0,3 мг/м 3 .

Соединения As(III) более ядовиты, чем соединения As(V). Из неорганических соединений особенно опасны As 2 O 3 и AsH 3 . Доза AsO 3 менее 0,1 г при попадании в желудок смертельна для человека. При работе с мышьяком и его соединениями необходимы: полная герметизация аппаратуры, удаление пыли и газов интенсивной вентиляцией, соблюдение личной гигиены (противопылевая одежда, очки, перчатки, противогаз), частый медицинский контроль; к работе не допускаются женщины и подростки. При остром отравлении мышьяком наблюдаются рвота, боли в животе, понос, угнетение центральной нервной системы. Помощь и противоядия при отравлении мышьяком: прием водных растворов Na 2 S 2 O 3 , промывание желудка, прием молока и творога; специфическое противоядие – унитиол.

МЫШЬЯК (Arsenicum, As ) - химический элемент V группы периодической системы Д. И. Менделеева, соединения к-рого в медицине используются в качестве лекарственных средств; радиоизотопы мышьяка применяют для изучения его обмена в организме и для диагностики опухолей головного мозга (однако в этой области мышьяк вытесняется более совершенными радиофармацев-тическими препаратами технеция-99м и др.). М. относят к микроэлементам (см.). При добыче мышьяковых руд и работе с веществами, содержащими М., необходима особая осторожность, т. к. М. и особенно его соединения представляют собой значительную профвредность. Соединения М. могут служить причиной острых и хрон, отравлений населения и персонала, имеющего с ними контакт. М. является также одним из наиболее сильных канцерогенов и тератогенов. Соли М. и другие его хим. соединения очень ядовиты, их применяют в качестве инсектицидов и гербицидов. Соединения М., попадая в организм, обладают способностью кумулироваться (в частности, в волосах и ногтях).

Содержание М. в земной коре составляет 0,0005 вес. %. В природе в чистом виде М. встречается редко; он распространен преимущественно в виде соединений с серой - сульфидов М. и сульфоарсенидов, реже в виде арсенатов (соли к-т 5-валентного М.) и арсенидов (соединения М. с металлами). Соли мышьяковистой к-ты, где М. трехвалентен, называются арсенитами. Известно св. 120 минералов, содержащих М., из к-рых наиболее распространены мышьяковый колчедан, мышьяковистый колчедан, реильгар (As 4 S 4). В рудах М. чаще всего встречаются в комплексе с благородными и цветными металлами и серой. При сплавлении со щелочами М. образует очень ядовитый мышьяковистый водород - бесцветный газ без запаха (в чистом состоянии). Весьма ядовиты также все ар-сенаты и арсениты, к-рые используются в качестве инсектицидов.

Содержание М. в незагрязненных пищевых продуктах низкое - в среднем сотые доли миллиграмма на 1 кг веса (массы); содержание М. в суточном пищевом рационе человека, как правило, не превышает 1 мг. Вода незагрязненных соединениями М. поверхностных водоемов содержит в 1 л несколько микрограммов (тысячных долей миллиграмма) М., однако концентрация его в воде нек-рых минеральных источников достигает нескольких десятков миллиграммов на 1 л (см. Мышьяковистые воды). Допустимая концентрация М. в питьевой воде по ГОСТ 2874-73 составляет 0,05 мг/л.

Атомный номер М. 33, атомный вес (масса) 74,9216; атомный радиус 1,48 А, относительная плотность 5,72 г/см 3 (при 20°). Валентность М. в соединениях +3, + 5, -3, реже +2. М. состоит из одного стабильного изотопа с массовым числом 75. Искусственно получены 14 радиоизотопов М. с массовыми числами от 68 до 85, два из к-рых имеют также изомеры (см. Изомерия).

Большинство радиоактивных изотопов М.- короткоживущие и ультракороткожив ущие, с периодами полураспада от секунд до десятков часов. В медицине в небольшом объеме применяются два радиоизотопа - с массовыми числами 74 (период полураспада 17,9 дня) и 76 (период полураспада - 26,4 часа). Потенциально подходящим для клин, исследований является также 72As, имеющий период полураспада 26 час.

76 As получают облучением природных соединений М. тепловыми нейтронами в ядерном реакторе, a 74As - на ускорителе заряженных частиц, чаще всего облучая германиевую мишень дейтронами на циклотроне, по реакции 73 Ge (d, n)- 74 As. Однако в этом случае по попутным реакциям образуются и другие радиоизотопы М. 72As можно получать с помощью изотопного генератора на основе материнского 72Se (период полураспада 8,4 дня), по реакции 70Ge (d, 2п) 72 Se->72As. 76As распадается с испусканием многокомпонентного спектра (3-излучения, основные составляющие к-рого имеют максимальные энергии Ер, равные 2,97 (54%); 2,41 (29%); 1,85(4%) и 1,76 МэВ (8%). Распад сопровождается V-излучением, охватывающим энергии от 0,510 до 2,656 МэВ. 74As распадается с помощью электронного захвата (39%), пози-тронного излучения (29%) с энергией Ез+ = = 1,54 (3,5%)и 0,91 МэВ (26%) и (3-излучения (32%) с энергией Ер = 1,35 (18%) и 0,72 МэВ (14%)- Распад также сопровождается 7-излучением в широком диапазоне энергий. 72As распадается путем электронного захвата и многокомпонентного позитрон-ного излучения, одновременно испуская широкий спектр v-излучения.

М. имеет не менее трех основных аллотропических модификаций, из к-рых две кристаллические и одна аморфная. М. в наиболее устойчивой при обычных условиях форме представляет собой хрупкий серый металл; при атмосферном давлении возгоняется, не плавясь, при 615°. При конденсации паров М. образуется желтый М.- прозрачные кристаллы* по консистенции напоминающие воск, с плотностью 1,97 г/см 3 , при действии света или при нагревании желтый М. переходит в серый М. Существуют также стекловидно-аморфные модификации: черный М. и бурый М., к-рые превращаются в серый М. при нагревании до температуры выше 270°. Из арсенатов и арсенитов растворимы в воде только соли щелочных металлов и аммония. Азотной к-той и царской водкой М. окисляется в мышьяковую к-ту H 3 AsO 4 . Эта к-та применяется как исходный продукт для получения используемых в медицине органических соединений М. С кислородом М. образует мышьяковистый ангидрид As 2 O 3 и мышьяковый ангидрид As 2 O 5 . При окислении As 2 O 3 азотной к-той может быть также получена мышьяковая к-та H 3 AsO 4 .

В промышленности М. получают нагреванием минерала - мышьякового колчедана или (реже) восстановлением As 2 O 3 с помощью угля. Для добычи М. используются и нек-рые другие минералы.

Наиболее распространенный и доступный метод выделения М. из субстратов биол, происхождения - это минерализация (см.) при помощи серной и азотной к-т. Качественно в минерализате М. может быть обнаружен методом, основанным на способности соединений М. восстанавливаться водородом до мышьяковистого водорода, к-рый обнаруживается затем качественными реакциями, напр, реакцией образования так наз. мышьякового зеркала, заключающейся в оседании на поверхности стекла металлического М. (так наз. проба Марша). Для количественного определения М. чаще всего применяют колориметрические методы: с диэтилдитиокарбаматом серебра в пиридине (чувствительность метода 0,04 мг As на пробу) и с использованием молибденовокислого аммония с серной к-той и электролитной медью для определения AsH3 (чувствительность метода - 0,002 мг AsH3 на пробу). Классическим методом количественного определения М. в чистом р-ре его солей является йодометрический метод, однако для практических целей он применяется редко.

Среднее содержание М. в теле человека - 0,08-0,2 мг/кг. В крови М. концентрируется в эритроцитах, где связывается с гемоглобином. Наибольшее его количество обнаружено в почках и печени. В тканях М. содержится в основном в белковой фракции. Он участвует в окислительно-восстановительных реакциях. Существует представление, согласно к-рому М. выполняет в организме какие-то функции, возможно и полезные, однако прямых доказательств этого нет.

М. постепенно выводится из организма, однако, поскольку период его полувыведения достаточно велик (280 дней), при постоянном поступлении М. в организме происходит его кумуляция.

Профессиональные вредности

Поступление в организм человека соединений М. может происходить в производственных условиях, а также вне производства с воздухом (за счет промышленных выбросов), с водой (за счет загрязнения ее промышленными стоками), а также с природными подземными водами (за счет контакта с богатыми М. породами), с пищевыми продуктами, загрязненными М.

В окружающей человека среде из всех соединений М. больше всего содержится его солей - арсенитов натрия и кальция, а также арсената кальция, применяемых в качестве инсектицидов. Эти соединения могут загрязнять почву и с.-х. продукты, смываться с почвы талыми и дождевыми водами в поверхностные водоемы, проникать в грунтовые воды. Большое количество соединений М. может выбрасываться в атмосферу и поступать со сточными водами в водоемы в р-не расположения промышленных предприятий цветной металлургии, перерабатывающих железную, медную, свинцовую, цинковую руду, содержащую примеси мышьяка, а также в р-не предприятий по производству инсектофунгицидов, предприятий золотодобывающей промышленности, крупных электростанций, работающих на углях нек-рых месторождений, и др.

Опасность соединений М. зависит от их способности растворяться в воде и биол, жидкостях. К высокотоксичным и высокоопасным соединениям М. относят мышьяковистый водород (AsH3, арсин), оксиды М.: окись As (III) - мышьяковистый ангидрид, белый мышьяк (As203); окись As (V) - мышьяковый ангидрид (As2O5); хлорид As (III), AsCl3, а также органические соединения М.

Плохо растворимые в воде соединения М., напр, сульфиты и сульфиды М., относительно малотоксичны.

Токсическая доза соединений М. при однократном поступлении находится в пределах 0,01-0,05 г (при повышенной чувствительности к М. 0,001 г), смертельная доза - 0.06 - 0,2 г.

Общий характер отравляющего действия соединений М. на животных и человека заключается в их первоочередном действии на нервную систему и стенки сосудов, результатом чего является увеличение проницаемости сосудистой стенки и паралич капилляров. Механизмы регуляции кровообращения нарушаются, в результате нарушения трофики развиваются некробиотические очаги в печени, сердце, кишечнике, почках, ногтях, на коже отмечаются экзема, гиперкератоз, мышьяковистые бородавки.

Первичный механизм токсического действия соединений М., особенно As (III), объясняют их высоким сродством к SH-группам (тиоловым группам) ферментов и других биологически активных соединений, в т. ч. глутатиона (см.). Необратимо связывая SH-группы, соединения М. ингибируют SH-ферменты, нарушается жировой и углеводный обмен, снижается интенсивность окислительных процессов в тканях. Глубина биохим, нарушений зависит от количества и продолжительности воздействия яда на организм. Кроме того, многие исследователи полагают, что М. является антиметаболитом йода, селена и, возможно, фосфора, конкурентно занимая их места в соответствующих биохим, цепях и блокируя их. Соединения As (III) токсичнее соединений As(V).

При потреблении природных или загрязненных М. вод, содержащих более 0,1 мг/л М., а также в случае несоблюдения гиг. нормативов на производстве может развиться хрон, отравление М. Мышьяк и его соединения в производственных условиях проникают в организм работающих преимущественно через органы дыхания, меньше - через неповрежденную кожу и жел.-киш. тракт.

При выраженном хрон, отравлении соединениями М., попадающими в организм человека различными путями, отмечаются постоянная тошнота, позывы на рвоту, боль в желудке, диспепсия, энтероколит, хрон, гепатит, в тяжелых случаях развивается цирроз печени. Аппетит отсутствует. Наблюдаются раздражение конъюнктивы, слезотечение, светобоязнь, отек век, помутнение стекловидного тела и роговицы, сухость в носоглотке, насморк, иногда изъязвление (вплоть до прободения) носовой перегородки, стоматит, ларингит, трахеит, бронхит. На коже - папулезная и пустулезная сыпь, чаще между пальцами; на мошонке - изъязвления; возникают жжение и краснота в области половых органов. Кроме того, хрон, отравления соединениями М. сопровождаются фурункулезом, рецидивирующей экземой, атрофическим акро-дерматитом, гипергидрозом, особенно ладоней и подошв (один из ранних симптомов интоксикации), пигментацией кожи, напоминающей пигментацию при аддисоновой болезни, атрофией и ломкостью ногтей, выпадением и поседением волос.

Изменения со стороны нервной системы выражаются снижением работоспособности, нарушением мышления, запоминания и речи, головной болью. Возможны депрессия, галлюцинации, раздражительность. Наблюдается полиневрит; в большинстве случаев поражение нервов симметричное, начинающееся дистально, на конечностях (чаще малоберцового и лучевого нервов). При прогрессировании поражения нервной системы - парезы и вялые параличи с последующей атрофией мышц и перерождением мышечной ткани.

Нередко развиваются ретробуль-барный неврит, расстройство вкуса и обоняния.

Часто при хрон, отравлении соединениями М. отмечают дистрофические изменения во внутренних органах особенно в печени, почках и в сердце. В отдельных случаях возможны акроцианоз, облитерирующий эндартериит и узелковый периартериит. Изменения крови могут выражаться в анемии разной степени. Половая активность снижена.

Доказано канцерогенное действие М. При многолетнем приеме препаратов М. внутрь или при работе с его соединениями в течение долгого времени развивается рак кожи. При профессиональном арсеницизме, а также после длительного лечения препаратами М. может развиться множественный рак. Поскольку вопрос о пороговости действия канцерогенов еще окончательно не решен, следует считаться с возможностью того, что поступление в организм любого количества М. связано с риском возникновения рака, так же как воздействие ионизирующей радиации. Экспериментально установлено тератогенное действие М.

Отравление

Острые отравления различными соединениями М. протекают тяжело.

Различают три формы острого отравления М.

При поступлении яда в желудок (напр., при отравлении инсектицидами и т. п.) наиболее вероятна жел.-киш. форма. При этом в течение первых V2-2 час. пострадавшие отмечают металлический вкус, ощущение царапанья и жжения во рту. Начинается сильнейшая боль в животе, неукротимая рвота. Рвотные массы чаще всего желто-зеленого цвета, иногда содержат белое «ядро» из нерастворившегося М. Спустя несколько часов рвота оканчивается, но боли в животе не прекращаются. Уже в первый день клин, картина этой формы острого отравления М. напоминает холеру. Наблюдается мучительный понос (испражнения напоминают рисовый отвар), наступает резкое обезвоживание организма, мочеотделение уменьшается, иногда до полной анурии (см.). Голос пострадавшего становится хриплым, нарастают судороги (особенно в икрах), цианоз, коллапс (см.). Смерть может наступить через несколько дней или даже часов.

Вторая форма острого отравления соединениями М.- паралитическая - наблюдается при поступлении в организм различными путями больших количеств яда (от 0,06 г и больше). Характерны общая слабость, болезненные судороги, потеря сознания, коматозное состояние, паралич дыхательного ii сосудодвигательного центров. Смерть может наступить через несколько часов, самое позднее - через сутки, без появления расстройств со стороны жел.-киш. тракта.

Третья форма острого отравления наблюдается при вдыхании пыли соединений М. (напр., при протравливании семян, добыче руды, содержащей М., и т. п.) или мышьяковистого водорода. При воздействии пыли М. сначала поражаются конъюнктива и слизистые оболочки дыхательных путей, иногда появляется кровохарканье. Если не принять надлежащих мер, все симптомы усиливаются, возникает сильная головная боль, иногда носовое кровотечение. Отмечают, что ранним симптомом этой формы острого отравления соединениями М. является тупая боль в руках и ногах. При утяжелении состояния появляются сладкий вкус во рту, тошнота, рвота, боли в животе, ощущение жара и зуда в области половых органов. Выражено поражение нервной системы - дрожание, судороги. Прогноз при этой форме острого отравления относительно благоприятный, однако последствия одноразового отравления могут сказываться в течение месяца.

Острые отравления мышьяковистым водородом по клин, картине не отличаются от отравлений, вызванных вдыханием других соединений М., что объясняется его гемолитическим действием. Первые симптомы отравления AsH3 - общее недомогание, рвота, желтуха, красный цвет мочи (за счет гемолиза крови), количество мочи уменьшено. В тяжелых случаях в крови резко снижено содержание эритроцитов и гемоглобина. Смертность при острых отравлениях мышьяковистым водородом достигает 30%.

Первая помощь и неотложная терапия. При отравлении соединениями М. по возможности требуется немедленная госпитализация. Неотложная терапия при отравлении AsH3 предполагает за-менное переливание крови с внутривенным вливаниехМ 40% р~ра глюкозы (10-20 мл), борьбу с анемией и почечной недостаточностью; в тяжелых случаях - искусственная почка. При остром отравлении per os проводят неотложные мероприятия, направленные на быстрое удаление М. из организма и его обезвреживание (рвотные средства, промывание желудка теплой водой, взвесью окиси магния - 20 г на 1 л воды). Затем вводят Antidotum arsenici (100 ч. р-ра сульфата железа плотностью 1,43 на 300 частей холодной воды) по 1 чайн. л. через каждые 10-12 мин. до полного прекращения рвоты. Применяют также Antidotum metallorum (в 100 мл воды 0,5-0,7 г сероводорода, 0,1 г едкого натра, 0,38 г сульфата и 1,25 г гидрокарбоната натрия): в желудок вводят 200 мл воды, затем 100 мл антидота, после чего промывают желудок. Назначают внутривенно 20 мл 25-40% р-ра глюкозы с аскорбиновой к-той (500 мг) и витамином Вх (50 мг), капельные клизмы из 5% р-ра глюкозы, физиол, р-р под кожу, камфору, кофеин, кислородную терапию. Следует как можно раньше начинать лечение ди-тиоловыми препаратами, к к-рым относятся липоевая кислота (см.), БАЛ, унитиол (см. Антидоты ОВ).

Для лечения некробиотических очагов на коже рекомендуют внутрь аскорбиновую к-ту, витамин А (100 000 ME в день), тиосульфат натрия (внутривенно), холодные примочки (свинцовые, с буровской жидкостью и др.), цинковые болтушки, гидрокортизоновую мазь, стрепто-цидную и синтомициновую эмульсии и т. п. При воспалении конъюнктивы или роговицы - местно 5% р-р БАЛ или 5% р-р унитиола, при блефарите - мазь, содержащую эти вещества.

Меры предупреждения отравлений, индивидуальная защита

В производствах, где возможен контакт с мышьяковистым водородом, рекомендуется герметизация оборудования, автоматизация процессов, рациональная планировка производственных помещений, эффективная вентиляция. При работе с пылевидными соединениями М. следует надевать респираторы типа «Лепесток» и др., защитные очки, противопылевую спецодежду и нательное белье, перчатки. Необходимы строгая личная гигиена, теплый душ без применения мыла после окончания работы, последующая обработка загрязненных или пораженных участков кожи спиртом. Производят дегазацию спецодежды (замачивание в 1% р-ре сульфата меди, 2% р-ре двууглекислого натрия или сульфата аммония, последующее тщательное прополаскивание или стирка под тягой). При возможности в технологическом процессе соединения М. заменяют другими, менее токсичными.

Обязательны осмотры рабочих перед приемом на работу на предприятия, где имеется контакт с М. и его соединениями, и периодические медосмотры работающих на этих предприятиях терапевтом - 1 раз в год, оториноларингологом - 1 раз в 3 мес., дерматологом - 1 раз в 6 мес. Рекомендуется определение М. в моче, количество к-рого в ней, по данным Планкетта (Е. P. Plunkett), не должно превышать 0,5-1 мг/л, а также в волосах и ногтях.

Работающим в производстве мышьяксодержащих солей, на добыче и переработке мышьяковых руд и т. п. полагается леч.-проф, питание (см. Питание лечебное), ежедневный прием 150 мг аскорбиновой к-ты, молоко (установлено, что молоко повышает выделение М. из организма и способствует лучшей его переносимости). Рацион работающих с М. должен быть обогащен белками, метионином и холином.

Предельно допустимая концентрация мышьякового и мышьяковистого ангидридов в воздухе - 0,1 мг/м 3 , арсената свинца - 0,15 мг/м 3 , мышьяковистого водорода - 0,1 мг/м 3 . При работе с радиоизотопами М. необходимо учитывать, что они относятся к радиоизотопам средней токсичности.

Минимально значимая активность на рабочем месте, пе требующая регистрации или получения разрешения органов Государственного сан. надзора, составляет не более 10 мккюри.

Определение в воздухе мышьяксодержащих соединений заключается в минерализации пробы сильными к-тами, окислении находящегося в пробе М. до мышьяковой к-ты, переводе ее в мышьяково-молибденовый комплекс и определении интенсивности его окраски колориметрированием. Соединения As (III) окисляют до As (V) и определяют таким же методом, чу ветви-тельность к-рого равна 0,5 мг As в анализируемом объеме. Используют также цветную реакцию М. с диэтил дитиокарбаматом серебра.

Патологическая анатомия отравлений мышьяком и мышьяк в судебно-медицинском отношении

Патологоанатомическая картина острых отравлений М. зависит от хим. свойств соединений М. и путей проникновения яда в организм (пероральный, ингаляционный, чрескожный).

При отравлениях арсенитами и ар-сенатами пероральный путем в течение первых часов отмечаются отек и полнокровие слизистой оболочки рта, глотки, пищевода, желудка и кишечника, очаговые кровоизлияния, поверхностные некрозы слизистой оболочки кишок, иногда их изъязвление, набухание и увеличение лимф, фолликулов (пейеровых бляшек) и лимф, узлов брыжейки, на слизистых оболочках обнаруживаются частицы яда. В тяжелых случаях патоморфол, картина в кишечнике напоминает изменения при холере.

При отравлениях мышьяковистым водородом ингаляционным путем наблюдается внутрисосудистый гемолиз с желтухой и появлением бронзового оттенка кожи, острый гемо-глобинурийный нефроз, дистрофия печени, гемолитическая анемия. Макроскопически в почках обнаруживается черно-бурая радиальная исчерченность в почечных пирамидках, обусловленная задержкой пигментированных шлаков в просвете дистальных отделов почечных канальцев (цветн. рис. 1). Гистологически в почках выявляются коагуляционный некроз эпителия почечных канальцев с последующим его отторжением и регенерацией, гемоглобиновые цилиндры в просвете почечных канальцев (цветн. рис. 2). Изменения в печени макроскопически соответствуют картине желтой дистрофии. Гистологически выявляется стеатоз, очаговые или диффузные центролобулярные некрозы. Электронно-микроскопически в почках и печени наиболее ранние повреждения обнаруживаются в эндотелии капилляров, отмечается отек, разрушение крист и деформация митохондрий, расширение эндоплазматического ретикулума, разрыв клеточных мембран, пикноз ядер. Начальные повреждения нефротелия более выражены в апикальных отделах. Они характеризуются разрывом клеточных мембран, десквамацией микроворсинок и некрозом клеток. В гепатоцитах наблюдается почти полное исчезновение гликогена, разрушение крист митохондрий, появление миелиновых телец в расширенных цистернах эндоплазматической сети, увеличение свободных рибосом, разрыв клеточных мембран.

Если смерть в результате острого отравления соединениями М. наступила через несколько дней после попадания М. в организм, то при суд.-мед. исследовании трупа выявляются дистрофические изменения мышц и нервных окончаний, полнокровие мозга. При суд.-мед. исследовании трупа наиболее выраженные изменения отмечаются при жел.-киш. форме отравления.

Суд.-хим. доказательство отравления М. заключается в обнаружении М. в минерализате различных тканей внутренних органов, костей, волос, ногтей и т. д. при помощи широко употребляемых хим. реакций на М.- пробы Марша и реакции с диэтилдитиокарбаматом серебра в пиридине. Т. к. положительную пробу Марша может давать также и сурьма (см.), то для идентификации М. кристаллы вещества, образующие серовато-черное зеркало на поверхности стекла, соскабливают, растворяют в нескольких каплях концентрированной азотной к-ты, р-р jnepe-носят на предметное стекло и добавляют хлорид цезия и йодид калия. М. в отличие от сурьмы образует сложные кристаллы в виде правильных шестилучевых звезд, окрашенных в красный цвет; при действии пиридина они растворяются, а по краям капли образуются желто-зеленые кристаллы пиридинового комплекса йодидов М. и цезия. М. в минерализате определяют в основном колориметрически в виде мышьяково-молибденового комплекса, имеющего синюю окраску. Чувствительность метода ок. 0,5 мг М. в анализируемом объеме. В практике суд.-мед. экспертизы используют также нейтронно-активационный анализ (см. Активационный анализ) для обнаружения и количественного определения в организме М. по образованию его изотопа 76As в результате облучения нейтронами соответствующих образцов содержащих М. тканей.

Препараты мышьяка

Леч. свойства соединений М. были известны еще в Древней Греции и Древнем Риме. В начале 20 в. препараты М. ввел в мед. практику в качестве лекарственных средств П. Эрлих. С леч. целью использовали как неорганические, так и органические соединения М. К неорганическим препаратам М. относят соединения As(III) - мышьяковистый ангидрид (Acidum arsenicosum anhydricum), р-р калия арсенита (Liquor Kalii arsenitis) и соединения As(V), в основном это натрия арсенат (Natrii arsenas). К органическим соединениям М., использовавшимся в качестве лекарственных средств, относят соединения As(III)-новарсенол (см.), миарсенол (см.) и соединение As(V)- осарсол (см.).

Однако ввиду высокой токсичности применение препаратов М. все более ограничивается. Из всех препаратов М. чаще всего используется мышьяковистый ангидрид, к-рый применяется местно в стоматологической практике для некротизации пульпы. Р-р калия арсенита (внутрь) и 1% р-р натрия арсената для инъекций, к-рый в сочетании со стрихнином входит также в препарат «Дуплекс», иногда применяют при легких формах анемии и для общеукрепляющей терапии.

Для лечения сифилиса ранее широко применялись новарсенол, миарсенол и осарсол в комплексе с другими противосифилитическими средствами. Однако они вытеснены антибиотиками, обладающими более высокой активностью и меньшей токсичностью.

Противопоказаний к применению препаратов М. много: индивидуальная непереносимость, острые инф. болезни (грипп, ангина и др.), язвенные процессы в жел.-киш. трак-те, болезни сердца и сосудов, гепатиты, заболевания почек, щитовидной железы, надпочечников, диабет, геморрагические диатезы, тяжелые формы анемии, туберкулез, заболевания ц. н. с., эпилепсия, болезни зрительного аппарата, хрон, интоксикации алкоголем, ртутью и свинцом.

Обладая достаточно высокой токсичностью, препараты М. даже в терапевтических дозах нередко вызывают тяжелые побочные реакции. Побочное действие препаратов М. проявляется прежде всего в отношении быстро пролиферирующих тканей (слизистая оболочка жел.-киш. тракта, костный мозг) и высокоспециализированных клеток (нейроны, клетки почечных канальцев). У больных после внутривенного и внутримышечного введения препаратов М. могут развиться явления острого отравления: коллапс, головная боль, тошнота, рвота. При неоднократном приеме препаратов М. могут появиться признаки хрон, отравления М.

Библиография: Вредные вещества в промышленности, под ред. Н- В. Лазарева и И. Д. Гадаскиной, т. 3, с. 214, Л., 1977; Г л и н-к а Н. Л. Общая химия, с. 424, М., 1978: И з р а e л ь Б. Е. и П о ж а р и с к и й Ф. И. Мышьяковистый водород, М., 1947; Крылова А.Н. Исследование биологического материала на «металлические» яды дробным методом, с. 66, М., 1975; Левин В. И. Получение радиоактивных изотопов, М., 1972; М а ш к о в с к и й М. Д. Лекарственные средства, т. 2, с. 87, 301, М., 1977; Многотомное руководство по патологической анатомии, под ред. А. И. Струкова, т. 8, кн. 1, с. 185, М.. 1962; Неницеску К. Д. Общая химия, пер. с румын., с. 442, М., 1968; Неотложная помощь при острых отравлениях, под ред. С. Н. Голикова, с. 121 и др., М., 1977; Нормы радиационной безопасности (НРБ-76), М., 1978; Профессиональные болезни, под ред. А. А. Летавета, с. 208, М., 1973; С e р e б р о в А. И. и Д а н e ц-к а я О. Л. Профессиональные новообразования, Л., 1976; Судебная медицина, под ред. В. М. Смольянинова, с. 242, М., 1975; X e в e ш и Г. Радиоактивные индикаторы, пер. с англ., М., 1950; Шва й-к о в а М. Д. Токсикологическая химия, с. 325, М., 1975; F г ё j a v i 1 1 e J. P. e. a. Intoxication aigue par les derives arsenicaux, Ann. Med. interne, t. 123, p. 713, 1972; H i n e C. H., P i n t o S. S. a. N e 1 s o n K. W. Medical problems associated with arsenic exposure, J. occup. Med., v. 19, p. 391, 1977; L e d e r e г С. M., H o 1 1 a n-d e r J. M. a. Perlman I. Table of isotopes, N. Y., 1967; Le Quesne P. M, a. McLeod J. G. Peripheral neuropathy following a single exposure to arsenic, J. neurol. Sci., v. 32, p. 437, 1977; M a p p e s R. Versuche zur Ausscheidung von Arsen in Urin, Int.Arch, occup. environm. Hlth, v. 40, p. 267, 1977; The pharmacological basis of therapeutics, ed. by L. S. Goodman a. A. Gilman, p. 943, N. Y. a. o., 1975.

В. А. Книжников; В. В. Бочкарев (рад), Л. Н. Зимина (пат. ан.), E. Н. Марченко (гиг.), А. Ф. Рубцов (суд.), Л. А. Серебряков (фарм.).